
An algorithmic skeleton for hybrid NUMA-aware

loop tiling and its derivatives

Al. Levchenko

SPbPU Supercomputer Center, St. Petersburg, Russia

The modern design of automatic loop transformation algorithms remains challenging due
to the growing complexity of deep memory hierarchies against the background of the current
efforts toward exascale and beyond. Overcoming the problem of modeling locality and non-
uniformity of memory access is a crucial step to deliver performance portability for a wide
range of the computational kernels across multi-level memory. Target architectures of this class
introduce special conditions to satisfy the automatic loop transformation algorithms, regardless
of whether these techniques have relied on affine transformations in the polyhedral compilation
framework or non-affine transformations on abstract syntax tree (AST). Singular characteristics
of modern and future multi-level memory architectures will inevitably require an automatic
parameterized definition of tiled loop characteristics in hierarchical tiling strategy to map it
according to the configuration of caches, NUMA nodes and translation lookaside buffer. Another
important criteria is a possibility to capture locality-enhancing features of polyhedral optimizers
like Pluto [1]. Moreover, the resulting optimized code should be experimentally evaluated on a
real large-scale system with deep memory hierarchies using polyhedral benchmark suite.

This paper introduces an algorithmic skeleton for the hybrid NUMA-aware loop tiling and
the first experimental results of the derived algorithms based on it. The prime objective of
the proposed approach is to achieve the performance portability for the computational kernels
on HPC machines with deep memory hierarchies. To this end, it is essential to improve ten-
dencies in program behavior to access neighboring memory regions near the regions that have
been recently accessed, or to reference the same recently referenced memory addresses, i.e., to
improve spatial or temporal locality, respectively. This goal is achieved via solving the prob-
lem of combining affine scheduling for locality with hierarchical parametric tiling performed
in a traditional syntactic/AST-based manner. Loop tiling, a fundamental transformation used
to exploit spatial and temporal data reuse, is applicable at both stages of the following two
approaches. The proof of concept for the hybrid affine+syntactic approach was proposed by
Shirako et al. (2014) [2]. Complementing the prior research of performing loop tiling in the com-
bined approach of this sort, this work contributes to (i) prioritization of spatial and temporal
data locality and (ii) modeling of non-uniformity effects of memory access. The Pluto polyhedral
parallelizer and locality optimizer [1] algorithm was used to prioritize the locality by iteratively
finding linearly independent hyperplanes based on the objective to minimize dependence dis-
tances. The stage of the AST-based approach allows to use a parameterized tiling strategy when
tile sizes are symbolic parameters of different configurations of hierarchical memory architec-
ture. In this way, it is possible to generate various parameters of tiles, such as size, shape or
form, when the effective set of the tiles is determined on the fly. Parameterized tiling provides
a near-optimal performance of the code via changing the granularity of the tile computations
at runtime in accordance with the memory hierarchy. It is this feature that has formed the
concept of NUMA-aware tiling. This method starts with calculation of the tile size coefficients
and shape finding for the certain level of hierarchy in the direct memory access cost model.
Further, the groups of memory hierarchy levels are defined, with tile size selection (TSS) and
tile shape selection (TSHS) algorithms performed for the groups. The implementation of the
proposed approach as a skeleton corresponds to the existing scientific efforts of the recent years
in the aspects of designing permutational target-specific TSS/TSHS algorithms, primarily for
stencil computations. The variants of Acoherent Non-Uniform Loop Tiling (ACNULT) algo-
rithm were designed on the basis of the proposed skeleton. ACNULT(1,2) implements TSS and

Суперкомпьютерные дни в России 2019 // Russian Supercomputing Days 2019 // RussianSCDays.org

204



Input: Intermediate representation of program P
Output: Intermediate representation of optimized P code

1 begin
2 /* Polyhedral transformations with locality

prioritization */

3 begin
4 P := loop fusion;
5 P := loop permutation;
6 { P := experimental loop skewing/tiling };
7 end
8 /* Loop transformations for non-uniformity */

9 begin
10 P := loop skewing;
11 P := modeling DMA costs for available levels of

memory hierarchies;
12 P := loop tiling with ACNULT(1) with TSS;
13 P := loop tiling with ACNULT(2) with TSHS;

14 end

15 end

Figure 1. Overall algorithmic skeleton pipeline extended with ACNULT variants

TSHS algorithms, respectively. Acoherence in this context means that the algorithm is based
solely on hardware-based cache coherence schemes, and it works with the globally addressable
shared memory of the multi-machine macronode in the same way as with the memory of a
general-purpose cluster node. Figure 1 illustrates an algorithmic skeleton.

A preliminary experimental evaluation of ACNULT derivatives was performed using multi-
machine macronode with cache coherent non-uniform memory access, which is part of the large-
scale ccNUMA system. Even the smallestmachinememory included L1d/L1i/L2/L3 cache levels
along with a three-tier NUMA nodes hierarchy and configurable L4-cache for a scalable directory
based on cache coherence protocol. PolyBench/C kernels were executed with EXTRALARGE
dataset size to provide highest workload. At the early stage, stencil computations formed a set
of kernels of interest. One aspect of the stencils is the limitation of memory bandwidth due to
the low ratio of floating-point operations per byte of data read from memory. Therefore, per-
formance improvement of the stencils will inevitably require a data movement reduction. The
highest speed-ups (relative to non-optimized code) were gained with ACNULT(1) for stencils,
in particular, with alternating direction implicit solver, 2-D finite different time domain kernel,
1-D Jacobi stencil computation, 2-D Jacobi stencil computation, and 2-D Seidel stencil compu-
tation. Improving the locality of these methods by the ACNULT-like techniques will raise the
performance of a wide range of computational kernels across deep memory hierarchies. In the
nearest future, the work will focus on multi-level tiling in the polyhedral model.

References

1. Aravind Acharya, Uday Bondhugula, Albert Cohen. Polyhedral auto-transformation with
no integer linear programming // 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018). Philadelphia, PA, USA. June 18–22,
2018. P. 529–542. DOI: 10.1145/3192366.3192401

2. Jun Shirako, Louis-Noël Pouchet, Vivek Sarkar. Oil and water can mix: an integration of
polyhedral and AST-based transformations // SC14: International Conference for High
Performance Computing, Networking, Storage and Analysis. New Orleans, LA, USA.
November 16–21, 2014. P. 287–298. DOI: 10.1109/SC.2014.29

Суперкомпьютерные дни в России 2019 // Russian Supercomputing Days 2019 // RussianSCDays.org

205


