
Developing Efficient Implementations of Shortest
Paths and Page Rank algorithms for NEC SX-
Aurora TSUBASA Architecture

Ilya Afanasyev, Vladimir Voevodin, Vadim Voevodin [2]

Hiroaki Kobayashi, Kazuhiko Komatsu [1]

[1] Tohoku University (Japan)

[2] Lomonosov Moscow State University (Russia)

RuSCD 2019
22.09.2019

Moscow, Russia

Motivation

Large-scale graph processing problems are extremely relevant to study nowadays, since
graph-analytics has numerous real-world applications

In modern supercomputing a variety of different platforms, architectures, and configurations
are used on hardware side

It is important to study which platforms are capable of more efficient graph-processing, and
which programming techniques it is necessary to use in order to maximise execution
efficiency

Current work is devoted to the investigation of vector processing possibilities for large-scale
graph problems on NEC SX-Aurora TSUBASA architecture

Implementing graph algorithms for vector architectures is typically challenging, because of
irregularity in graph data-structure and memory access patterns

No implementations of graph algorithms for SX-Aurora TSUBASA exist yet (!)

2

NEC SX-Aurora TSUBASA Architecture Details

3

NEC SX-Aurora TSUBASA is a dedicated vector processor of the NEC SX- architecture family

Unlike the previous SX- computers, the SX-Aurora TSUBASA is provided as a PCIe card, and the whole
system consists of vector engines (VEs), equipped with a vector processor and a vector host (VH) of an x86
node.

VE includes 8 vector cores, 4.3 TFlop/s performance (SP)

6 HBM modules, 1.22 TB/s bandwidth

4

Each vector core consists of SPU (processing scalar
instructions) and VPU (processing vector instructions)

VPUs operate with vectors of up to 256 length

NEC SX-Aurora TSUBASA Architecture Overview

NEC SX-Aurora TSUBASA & GPUs

NEC SX-Aurora TSUBASA vector engines have many similar properties/characteristics
with modern GPUs:

A combination of MIMD and SIMD execution model

High-bandwidth memory utilisation, optimised for collective memory accesses
performed by warps/vector instructions

Installed as co-processor (with different execution model)

Many people are familiar with GPU programming, and many graph-processing frameworks
are already implemented for GPUs (Gunrock, NVGRAPH, cuSHA, etc.)

Question: Does these similarities mean that graph algorithms can be implemented on SX-
Aurora TSUBASA in the same way?

5

Both Systems Are Installed As Co-processors

6

Despite both architectures are installed as co-processors, their execution models are
different:

NEC SX-Aurora TSUBASA Vector Cores

7

8 powerful vector cores

Each core has scalar (SPU) and vector (VPU) processing units

NEC SX-Aurora TSUBASA Execution Model

8

Different vector cores work according to MIMD model

Each vector core operates with vector instructions of length 1-256 (SIMD)

Each vector command of length 256 is processed by 32 VPP in portions, pipelining is organised between
different computational units (FMA, ALU,….)

Memory Bandwidth & Cache Hierarchy

9

Both NEC SX-Aurora TSUBASA and modern GPU architectures utilise
High Bandwidth Memory 2 (HBM2) technology, and thus have similar
memory hardware characteristics

However, SX-Aurora and GPUs have different cache-hierarchy: SX-Aurora
Vector cores direct transactions through large LLC shared cache (16 MB),
while CUDA-cores use relatively small L1(64 KB) and L2 (4 MB) caches

Architecture Memory type Memory capacity Theoretical peak
bandwidth (GB/s)

Bandwidth achieved
on STREAM

benchmark (GB/s)

The ratio of bandwidth
achieved on STREAM

to theoretical

SX-Aurora
TSUBASA HBM2 up to 48 GB 1200 995 82 %

NVIDIA Pascal
P100 HBM2 up to 16 GB 732 628 85 %

NVIDIA Volta
V100 HBM2 up to 32 GB 900 809 89 %

Which graph algorithms we are going to
investigate?

10

Graph Problems & Input Data

Currently we implemented 4 important graph-processing algorithms for different real-world problems:

 Single Source Shortest Paths (SSSP) — Navigation, Peer to Peer Networks

 Page Rank (PR) — ranking web-pages, finding leaders in communities

 Connected Components (CC) — finding communities in social networks

Single Source Widest Paths (SSWP) - optimising traffic in networks

We have also experimented with various data sets (input graphs), including:

 Synthetic graphs (RMAT, Uniform-random)

 Road map graphs (USA, New-York, CA, etc)

 Social network graphs (Twitter, LiveJournal, Pockec, Wikipedia)

 Web-graphs (various domain subgraphs)

11

Implementation Details

12

In current work we investigate only shared-memory architecture
implementations

Shared-memory implementations of graph algorithms are generally much
more efficient, since graph-processing problems tend to have an
enormous amount of inter-node communications, what bottlenecks
node performance

Moreover, modern studies demonstrate that platforms with shared-memory
architecture are currently able to process a lot of real-world graphs
(different social networks, etc)

Implementation Details

13

1. Optimising effective memory bandwidth during graph traversals (while
loading both vertices and edges data)

loading information about vertices implies indirect memory
access pattern

loading information about edges implies direct memory access
pattern

both should be executed with high efficiency!

2. Traversing graphs using vector instructions of maximum (256) length

3. Efficiently balancing parallel workload between 8 vector cores

14

Challenges of Implementing Graph Algorithms on
NEC SX-Aurora TSUBASA Architecture

Challenge 1: Optimising Effective Memory
Bandwidth

Graphs algorithms are typically memory-bound

Thus, it is important to maximise effective memory bandwidth during graph
traversals

In order to achieve high memory bandwidth on SX-Aurora TSUBASA:

1. all required data should be loaded either from LLC cache or sequentially from
memory

2. vector cores should load data with a specific pattern

Thus, a specific graph storage format should be used

Ideally, this format should also be helpful with 2 other problems (utilising vector
instructions and inter-core load balancing)

15

Graph Algorithms Classification (Active-Based)

Iterative graph algorithms can be classified into 2 groups:

1. All-active (all vertices of input graphs are traversed on each iteration)

2. Partially-active (only specific «active» vertices of input graph are traversed
on each iteration)

Typically «partially-active» graph algorithms have lower computational complexity,
but are significantly harder to implement (especially on vector systems)

All listed problems (SSSP, PR, CC, SSWP) can be solved with all-active
algorithms rather efficiently

16

v1 v2 v2 v3 v4 v5 v6

v1 v2 v2 v3 v4 v5 v6

iteration 1

iteration 2

v1 v2 v2 v3 v4 v5 v6

v1 v2 v2 v3 v4 v5 v6

iteration 1

iteration 2

«all-active» algorithm «partially-active» algorithm

Another possible classification of graph algorithms is based on direction of traversals:

1. pull-based (each vertex updates it’s own value)

2. push-based (each vertex updates values of it’s neighbours)

We use pull-based traversals, since they don’t require atomic operations support and
typically allow to obtain higher effective bandwidth

On SX-Aurora Gather operation is faster compared to Scatter operation

Pull-based traversals require transposed (reversed graphs)

17

Graph Algorithms Classification (Direction-Based)

current
vertex

v2

v3

v4

Propagate current
 vertex value

through edges to
adjacent vertices

«Push based»

update v2, v3,
v4 data current

vertex

v2

v3

v4
Gather data from
adjacent vertices

«Pull based»

update current
vertex data

Developing Graph Storage Format…

«All-active» graph algorithms allow to perform efficient vectorised graph
traversals and support efficient memory access pattern

We use an approach, when each vector instruction processes 256 different
graph vertices in parallel

We propose VectCSR graph storage format, which is optimised for
supporting vectorised graph traversals and efficient memory accesses

18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 1 2 2 2 4 4 4 8 8 8 9 9 10 12 14 15 0 0

0 0 1 1 2 3 3 10 11 12 15 1

1 1 1 3 3 5 8 9 13 2 2 2

5 6 7 9 10 12 13 14 int* dst_ids_first_part

int number_of_vertices_in_first_part = 4

lo
ng

 lo
ng

* fi
rs

t_
pa

rt_
st

ar
ts

20

12

12

8

0

20

32

40

0

2

3

0

1

4

5

4

1

7

5

6

3

8

9

8

9

12

6

7

0

2

1

7

0

4

10

11

0

9

10

11

0

13

14

15

int* dst_ids_second_part

segment №1

segment №2

segment №3

0

20

32

5

3

1

in
t*

 s
eg

m
en

t_
siz

es

lo
ng

 lo
ng

* s
eg

m
en

t_
st

ar
ts

in
t*

 fi
rs

t_
pa

rt_
siz

es

VectCSR Graph Storage Format

Original graph is reversed to
support «pull-based» traversals

All graph vertices are sorted
based on the out-degree

Vertices are split into 2 groups

Edges are appended with loops
for vectorised graph-processing

ve
rt

ic
es

 w
ith

 m
an

y

co
nn

ec
tio

ns
 c

ou
nt

(fi

rs
t g

ro
up

)

ve
rt

ic
es

 w
ith

 fe
w

co

nn
ec

tio
ns

 c
ou

nt

(s
ec

on
d

gr
ou

p)

How much extra space VectCSR format
requires?

20

%
 o

f a
dd

iti
on

al
 e

dg
es

0

0,44

0,88

1,32

1,76

2,2

rm
at

_1
9_

32

rm
at

_2
0_

32

rm
at

_2
1_

32

rm
at

_2
2_

32

rm
at

_2
3_

32

rm
at

_2
4_

32

rm
at

_2
5_

32

w
ik

i-t
op

ca
ts

w
ik

i-e
n-

hy
pe

rli
nk

s

po
ke

c

liv
e-

jo
ur

na
l

tw
itt

er

Not many additional edges are added to the graph (due to vertex sorting):

Graph Traversals in VectCSR Format (First
Group)

21

0 1 1 2 2 2 4 4 4 8 8 8 9 9 10 12 14 15 0 0

0 0 1 1 2 3 3 10 11 12 15 1

1 1 1 3 3 5 8 9 13 2 2 2

5 6 7 9 10 12 13 14

Each vertex of the first group is processed collectively by all 8 vector
cores with vector instructions of 256 length

#pragma omp for schedule(static, 1) is used

core 1 core 2 core 3 …

Graph Traversals in VectCSR Format (First
Group)

22

each 256 sequential vertices from the
second group are processed by a single
vector core

#pragma omp for schedule(static, 1) is
used to process different groups of
vertices

4

5

6

7

8

9

10

11

12

13

14

15

0

2

3

0

1

4

5

4

1

7

5

6

3

8

9

8

9

12

6

7

0

2

1

7

0

4

10

11

0

9

10

11

0

13

14

15

segment №2

segment №3

co
re

 1
co

re
 2

…

Memory Access Patter in Social-Network Graphs

Social-network graphs have power-law properties, which:

1. Allow to efficiently cache most frequently accessed graph
vertices (+)

2. Create a lot of cache-conflicts when accessing these vertices
(-)

We implement 2 optimisations, aimed to improve accesses to
these vertices:

1. Storing information about most frequently accessed vertices
in private copies of arrays, located in different areas of LLC
cache (eliminate inter-core conflicts)

2. Storing information about most frequently accessed vertices
with intervals of 3 elements

These 2 optimisations allow to achieve similar performance when
processing power-law graphs compared to random-uniform
graphs

23

2 Memory Access Pattern Optimisations

 #ifdef __USE_NEC_SX_AURORA__
 #pragma _NEC retain(private_src_array)
 #endif

 for(int i = 0; i < CACHED_VERTICES; i++)
 private_src_array[i * CACHE_STEP] = _src_array[i]; // copy data about most frequently accessed vertices to private
arrays

 #ifdef __USE_NEC_SX_AURORA__
 #pragma _NEC ivdep
 #pragma _NEC vovertake
 #pragma _NEC novob
 #pragma _NEC vector
 #endif
 #pragma omp for
 for(long long int i = 0; i < edges_count; i++)
 {
 _T dst_value = 0;
 int dst_id = outgoing_ids[i];
 if(dst_id < CACHED_VERTICES)
 {
 dst_value = private_src_array[dst_id * CACHE_STEP]; // store data about most frequently accessed vertices with
intervals
 }
 else
 {
 dst_value = _src_array[dst_id];
 }
 _dst_array[i] = dst_value;
 }

24

Performance Evaluation

Performance of Graph Traversal in VectCSR
Format

26

Pe
rfo

rm
an

ce
 (M

TE
PS

)

0

6250

12500

18750

25000

31250

37500

43750

50000

number of vertices in graph

2^
18

2^
19

2^
20

2^
21

2^
22

2^
23

2^
24

2^
25

2^
26

SX-Aurora (Random-Uniform) SX-Aurora (RMAT)
soc-pokec soc-lj
wiki-en-hyperlinks soc-twitter
SX-Aurora (RMAT, unoptimised)

Performance on RMAT scales
well since most indirect
memory accesses are
directed to the first vertices
with large connections count

Performance for Uniform-
Random Graphs drops
significantly when vertices
data can’t be stored in LLC
cache

Real-World graphs have
«middle» performance

8-10 times
 faster!

Data about vertices
(indirectly accessed)

doesn’t fit into 16 MB LLC cache

Single Source Shortest Paths (SSSP)
Performance

27

Performance scaling on synthetic RMAT graphs

Pe
rfo

rm
an

ce
 (M

TE
PS

)

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

graph type and scale

rm
at

_2
0_

32

rm
at

_2
1_

32

rm
at

_2
2_

32

rm
at

_2
3_

32

rm
at

_2
4_

32

rm
at

_2
5_

32

rm
at

_2
6_

32

NEC SX-Aurora TSUBASA P100 GPU (NVGRAPH) Intel Skylake
Performance on real-world graphs

0

600

1200

1800

2400

3000

3600

4200

4800

5400

6000

graph name and scale

w
eb

-g
oo

gl
e

w
eb

-w
ik

i-r
u

w
ik

i-t
op

ca
ts

so
c-

po
ke

c

so
c-

lj

so
c-

tw
itt

er

fri
en

ds
te

r

2-4 times
 faster compared to
GPU implementaion!

Page Rank (PR) Performance

28

Performance scaling on synthetic RMAT graphs

Pe
rfo

rm
an

ce
 (M

TE
PS

)

0

3200

6400

9600

12800

16000

graph type and scale

rm
at

_1
8_

32

rm
at

_1
9_

32

rm
at

_2
0_

32

rm
at

_2
1_

32

rm
at

_2
2_

32

rm
at

_2
3_

32

rm
at

_2
4_

32

rm
at

_2
5_

32

rm
at

_2
6_

32

SX-Aurora P100 GPU (NVGRAPH) Intel Skylake

Performance on real-world graphs

0

2800

5600

8400

11200

14000

graph type and scale

w
eb

-g
oo

gl
e

w
eb

-b
er

k-
st

an

w
eb

-w
ik

i-r
u

w
eb

-w
ik

i-e
n

w
ik

i-t
op

ca
ts

so
c-

po
ke

c

so
c-

lj

so
c-

tw
itt

er

fri
en

ds
te

r

What about bandwidth?

29

Eff
ec

tiv
e

ba
nd

w
id

th
 (G

B/
s)

0

125

250

375

500

Graph scale
18 19 20 21 22 23 24 25 26

RMAT (bandwidth) Random-Uniform (bandwidth)

For RMAT graphs we obtain about 40-50% of theoretical peak bandwidth

Bandwidth for Random-Uniform graphs drops significantly when indirectly accessed
vertices data can not be placed inside LLC cache

Higher effective memory bandwidth
(80-90%) can not be obtained in
programs with gather/scatter
instructions when working with 4-
byte data, since:

gather/scatter instructions load
256*4=1024 bytes of data

load/store instructions are
capable of loading 2048 bytes of
data, which effectively doubles
achieved bandwidth

Is it Possible to Improve Performance for Large
Random-Uniform Graphs (and other real-world
graphs)?

In order to improve locality of indirect memory accesses, cache-blocking
technique can be used (similar to CPU, unlike to GPU)

30

Pe
rfo

rm
an

ce
 (M

TE
PS

)

0

6250

12500

18750

25000

31250

37500

43750

50000

number of vertices in graph

2^
18

2^
19

2^
20

2^
21

2^
22

2^
23

2^
24

2^
25

2^
26

VectCSR (Random-Uniform)
VectCSR + segmenting (Random-Uniform)

Data fits into LLC,
no difference

Data doesn’t fit into LLC,
3-4x difference

Conclusions

We presented world-first attempt to implement vectorised graph algorithms for
NEC SX-Aurora TSUBASA architecture

We discussed techniques, which can be used to implement «all active» «pull-
direction» graph algorithms, including VectCSR format

4 fundamental graph processing algorithms (SSSP, CC, PR, SSWP) have been
implemented, significantly outperforming similar GPU-based implementations

Developed implementations allow to achieve 40-50% of theoretical peak memory
bandwidth on several power-law graphs

Possibility of using cache-blocking technique was investigated

Future works includes developing more algorithms for SX-Aurora architecture, and
investigating approaches for developing different groups of graph algorithms

31

