

Национальный исследовательский

Томский государственный университет

Simulation of "ExoMars" Spacecraft Landing on the Surface of Mars Using Supercomputer Technologies

<u>Anuar Kagenov</u>, Sergey Prokhanov, Anatoliy Glazunov, Ivan Eremin, Kirill Kostyushin, Konstantin Zhilcov, Iliya Tyryshkin and Sergey Orlov

> Суперкомпьютерные дни в России 23-24 сентября 2019 г. Москва

Рис. 1 – Схема движения десантного модуля при его спуске и посадке на поверхность Марса предполагаемая специалистами АО «НПО Лавочкина»

Физическая постановка задачи

Рис. 2 – Приближенная конфигурация посадочной платформы «ЭкзоМарс»

Физическая постановка задачи

Четырехкамерная двигательная установка Газ - продукты сгорания гидразина Число Маха на срезе сопел М ≈ 5 Число Рейнольдса на срезе сопел Re $\approx 10^5 - 10^6$

Рис. 3 – Схема взаимодействия струй ДУ с поверхностью посадки

Математическая постановка

Уравнение неразрывности:

$$\frac{\P \overline{r}}{\P t} + \frac{\P}{\P x_j} \overset{\text{iff}}{\P t} \partial_{g} \overset{\text{iff}}{\Pi} 0.$$
(1)

Уравнение движения:

Уравнение баланса энергии:

$$\frac{\P\left(\overline{r} \stackrel{\bullet}{E}^{0}\right)}{\P t} + \frac{\P}{\P x_{j}} \stackrel{\breve{H}}{H} \stackrel{\flat}{H} \stackrel{\flat}{H} \stackrel{\bullet}{H} \stackrel{\flat}{h} \stackrel{\bullet}{P} + \stackrel{\flat}{H} \stackrel{\bullet}{p} - \stackrel{\flat}{H} \stackrel{\bullet}{h} \stackrel{\bullet}{H} \stackrel{\bullet}{h} 0.$$
(3)

Уравнение состояния идеального газа:

$$\overline{p} = \overline{r}RT^{0}.$$
(4)

Модель турбулентности:

SST k - w

Рис. 4 – Схема расчетной области с обозначением границ а) пространственная; б) упрощенная в сечении.

Граничные условия:

Г1 – вход в сопло: $p = p_0, T = T_0, u_x = 0, u_z = 0, k = k_0, w = w_0$. Г2, Г5 – твердая стенка: $u_x = 0, u_y = 0, u_z = 0, \text{ grad}(T) = 0$. Пристеночная функция OmegaWallFunctions

$$\omega = \sqrt{\omega_{vis}^2 + \omega_{Log}^2}$$
, где $\omega_{vis} = 6\mu/\rho\beta_1 y_1^2$; $\omega_{Log} = k^{\bar{2}}/C_{\mu}^{\bar{4}}k_1 y_1$

ГЗ, Г4 – внешние границы: $\P/\P n = 0$.

Начальные условия: $T = T_a; p = p_a;$ $u_x = u_y = u_z = 0;$ k = 0; w = 0.

Расчетная область

Рис. 9 – Схема внешней расчетной области

Расстояние от среза сопла до поверхности составляло:

- *h*=1.0 метр;
- *h*=0.5 метра;
- *h*=0.3 метра.

Координаты точек *A*, *B*, *C*, *D* в декартовой системе координат имели следующие значения (метры): Расстояние *h*=1 метр:

A(-10 -1 -10); *B*(-10 -1 10); *C*(10 -1 10); *D*(10 -1 -10);

Расстояние *h*=0.5 метра:

A(-10 -0.5 -10); *B*(-10 -0.5 10); *C*(10 -0.5 10); *D*(10 -0.5 -10);

Расстояние *h*=0.3 метра:

A(-10 -0.3 -10); *B*(-10 -0.3 10); *C*(10 -0.3 10); *D*(10 -0.3 -10);

Координаты точек А', В', С', D' для всех расстояний *h* соответствовали значениям: *A*'(-10 10 -10); *B*'(-10 10 10); *C*'(10 10 10); *D*'(10 10 -10).

Геометрические и термодинамические параметры для тормозных двигателей

Таб. 1. Параметры тормозного двигателя четырехкамерной ДУ

Параметр	Минимальный режим	Максимальный режим	
Диаметр сопла в критическом сечении. м	0.03613		
Диаметр среза сопла, м	0.19395		
Угол полураствора сопла, град	10		
Длина сопла от критического сечения до среза, м	0.23		
Давление газа в камере, МПа	0.28	1.962	
Температура газа в камере, К	1180 1336		
Показатель адиабаты	1.33719 1.29222		
Газовая постоянная, Дж/(кг·К)	640 571		
Молекулярная масса газовой смеси, кг/кмоль	12.97 14.53		
Число Маха на срезе сопла	4.771 4.502		
Расход газа, кг/с	0.222 1.46		
Тяга в пустоту, Н	490.5 3433.5		

Параметры окружающей среды: Давление – 650 Па; Температура – 250 К; Скорость – 0 м/с.

Программы

OpenFOAM Extended

Решатель: dbnsTurbFoam

- Метод конечных объемов
- Метод установления
- 4-х шаговый метод Рунге-Кутта
- TVD-схема
- HLLC
- Метод декомпозиции расчетной области Scotch

The Open Source CFD Toolbox

Суперкомпьютер ТГУ

Спецификация серверов:

Dell R540

2xIntel Xeon Gold 5118, 128 Гб ОЗУ, SSD 2x240 Гб М.2

Dell R440

2xIntel Xeon Silver 4114, 96 Гб ОЗУ, SSD 2x240 Гб М.2

V-Class

2xIntel Xeon E5-2695V3, 256 Гб ОЗУ, SSD 500 Гб, 2xTesla K80*

HP ProLiant SL250s

2xIntel E5-2609, Xeon Phi 5100, 96 Гб ОЗУ RAM, HDD RAID (mirror) 1Тб

T-Blade 2.0

2xIntel Xeon 5670, 24 Гб ОЗУ

T-Blade 1.1

2xIntel Xeon 5670, 48 Гб ОЗУ, HDD 150 Гб (SSD 250 Гб)*

Supermicro

2xIntel Xeon 5675, 24 Гб ОЗУ, HDD 1 Тб (SSD 250 Гб)*, Nvidia GTX 1070

Panasas ActiveStor 8/11/14

Рис.5 – Геометрия и расчетная сетка

Расчетная сетка

Рис.6 – Расчетная сетка

Рис.7 – Сравнение производительности

Тестирование производительности

Рис.9 – Изоповерхности числа Маха, минимальный режим ДУ

Рис. 10 – Изоповерхности числа Маха, максимальный режим ДУ

19

Рис.11 – Минимальный режим ДУ

Рис.12 – Максимальный режим ДУ

Рис.13 – Распределение параметров газа на поверхности ДМ, минимальный режим ДУ

Рис.14 – Распределение параметров газа на поверхности ДМ, максимальный режим ДУ

Эффект «lift loss»

Таб. 2. Результаты расчетов силового воздействия струй ДУ на поверхность ПсМ-1 и ПсМ-2 и эффекта «lift loss»

Режим ДУ	Минимальный			Максимальный		
Высота, м	1.0	0.5	0.3	1.0	0.5	0.3
ПсМ-1						
<i>G</i> ₀ , H	1521		1466			
<i>G</i> , H	1488	1700	1879	1068	2132	5166
L_{f}	-0.016	0.08	0.18	-0.028	0.048	0.268
ПсМ-2						
<i>G</i> ₀ , H	5017			4635		
<i>G</i> , H	5055	4959	4941	3871	5657	7749
L_{f}	0.0192	-0.0296	-0.0384	-0.056	0.072	0.224

Лихачев В. Н. Управление движением посадочного модуля космического annapama «ЭкзоМарс» на этапе его спуска и посадки на поверхность Марса / В. Н. Лихачев, В. П. Федотов // Вестник ФГУП НПО им. С.А. Лавочкина. – 2014. – Т. 23, № 2. – С. 58-64.

22

 $L_f = \frac{G - G_0}{P}.$

Рис.15 – Распределение параметров газа на поверхности Марса, минимальный режим ДУ

Рис.16 – Распределение параметров газа на поверхности Марса, максимальный режим ДУ

Результаты численных исследований Оценка эрозии грунта Марса

Таб. 3. – Типы и параметры марсианского грунта

Обозначение	Тип грунта	Угол внутреннего трения, градус	Удельное сцепление, кПа
$ au_1$	Сыпучий	18	3
$ au_2$	Комковатый	35	3
$ au_{_3}$	Кусковатый	30	11
$ au_4$	Песок	30	1
$ au_{5}$	Аналог	32.5	0.718

 $\tau = \sigma \tan(\varphi) + c,$

σ – нормальное давление;

 φ – угол внутреннего трения;

с – удельное сцепление.

Mojave Mars Simulant оценки прочности на сдвиг в пределах $\tau = 3-20$ кПа; ES-1, ES-2 и ES-3 оценки прочности на сдвиг в пределах $\tau = 5-20$ кПа.

Golombek M. P. The Martian surface: Composition, mineralogy and physical properties / M. P. Golombek, A. F. C. Haldemann, R. A. Simpson, R. L. Fergason, N. E. Putzig, R. E. Arvidson, J. F. Bell III, M. T. Mellon // Cambridge Univer. Press, Cambridge Planetary Science. – 2008. – P. 468-498.

Демидов Н. Э. Грунт Марса: разновидности, структура, состав, физические свойства, буримость и опасность для посадочных аппаратов / Н. Э. Демидов, А. Т. Базилевский, Р. О. Кузьмин // Астрономический Вестник. – 2015. – Т. 49, № 4. – С. 243-261.

Hanley J. Mechanical strength of Martian analog soil / J. Hanley, M. T. Mellon, R. E. Arvidson // 45th Lunar and Planetary Science Conference. – 2014. – Abstract № 2879.

Оценка эрозии грунта Марса

Таб. 4. – Значения касательных напряжений

Режим ДУ	Высота, м	Сыпучий ⁷ 1 , кПа	Комковатый $ au_2$, кПа	Кусковатый ⁷ 3, кПа	Песок $ au_4$, кПа	Аналог ⁷ 5 , кПа
Минимальный	1.0	3.6	5.3	12.1	2.1	1.9
	0.5	4.4	6.9	13.4	3.4	3.4
	0.3	4.8	7.8	14.2	4.2	4.2
Максимальный	1.0	5	8.3	14.6	4.6	4.7
	0.5	8.4	15.7	20.6	10.6	11.3
	0.3	13	25.5	28.7	18.7	20.25

Mojave Mars Simulant оценки прочности на сдвиг в пределах $\tau = 3-20$ кПа; ES-1, ES-2 и ES-3 оценки прочности на сдвиг в пределах $\tau = 5-20$ кПа.

Hanley J. Mechanical strength of Martian analog soil / J. Hanley, M. T. Mellon, R. E. Arvidson // 45th Lunar and Planetary Science Conference. – 2014. – Abstract № 2879.

Brunskill C. Characterisation of Martian Soil Simulants for the ExoMars rover testbed / C. Brunskill, N. Patel, T. P. Gouache, G. P. Scott, C. M. Saaj, M. Matthews, L. Cui // Journal of Terramechanics. – 2010. – V. 48. – P. 419-438.

Рис.17 – Минимальный режим ДУ, диаметр частицы 10 мкм

Рис.18 – Минимальный режим ДУ, диаметр частицы 100 мкм

Рис.19 – Минимальный режим ДУ, диаметр частицы 1000 мкм

Рис.20 – Минимальный режим ДУ, пробная частица

Заключение

- Проведено трехмерное математическое моделирование заключительного этапа мягкой посадки КА «ЭкзоМарс» с использованием суперкомпьютера ТГУ СКИФ Cyberia.
- Выполнено сравнение производительности параллельных вычислений с использованием Bare Metal, KVM и Docker на примере решателя OpenFOAM для решения задач газовой динамики.
- Исследован эффект Lift Loss в условиях Марса.
- Проведены оценки возможной эрозии грунта Марса в результате силового воздействия сверхзвуковых струй ДУ ПсМ «ЭкзоМарс».
- Исследовано движение твердых частиц грунта Марса.

Национальный исследовательский

Томский государственный университет

Спасибо за внимание

• https://vk.com/openfoam

- docker pull akad/openfoam-ext-40-paraview
- instagram @anuarkagenov