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Abstract. The paper is devoted to an extension of the parallel platform
INMOST by finite element and meshing libraries of the Ani3D software
package. The extension allows us to develop parallel finite element solvers
of boundary value problems and, in particular, hydrodynamic problems.
The Ani3D package allows one to build, refine, locally adapt and improve
the quality of tetrahedral meshes, perform finite element discretizations
of partial differential equations for various types of finite elements, solve
the appearing algebraic systems, and visualize the discrete solutions. The
INMOST software platform provides tools for creating and storing dis-
tributed general conformal grids with arbitrary polyhedral cells, parallel
assembling and parallel solution of arising distributed linear systems.
We present the integration of two libraries from Ani3D into INMOST
platform and demonstrate the functionality of the joint software on the
solution of two model hydrodynamic problems on multiprocessor sys-
tems.

Keywords: parallel computing, finite element method, parallel solvers,
hydrodynamic problems

1 Introduction

We consider an extension of the parallel platform INMOST by finite element
and meshing libraries of the Ani3D software package. The extension provides
a tool for developing parallel finite element solvers of boundary value problems
and, in particular, hydrodynamic problems. The Ani3D package [1] offers ad-
vanced finite element discretizations on tetrahedral meshes and various options
of tetrahedral mesh generation, refinement, and adaptation. The parallel plat-
form INMOST [2] provides tools for creating and storing distributed general
conformal grids with arbitrary polyhedral cells, parallel assembling and parallel
solution of arising distributed linear systems. Integration of two libraries from
Ani3D into the INMOST platform offers a new technology of parallel solution of
boundary value problems. Functionality of the joint software is demonstrated on
the solution of two model hydrodynamic problems on multiprocessor systems.
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The paper is organized as follows. Sections 2 and 3 contain brief descriptions
of Ani3D and INMOST packages, respectively. Section 4 provides technical de-
tails of merging the packages. Section 5 demonstrates the parallel solution of two
model hydrodynamic problems.

2 Ani3D package

The package Ani3D [1] is developed for generation of unstructured tetrahedral
meshes, adaptation of these meshes isotropically or anisotropically, discretization
of PDE systems, solution of linear and nonlinear systems, visualization of meshes
and associated solutions. It consists of a set of independent libraries oriented to
the solution of the specific tasks. All these libraries allow a user to operate with
data in sequential mode only. We consider the Ani3D-extension of the INMOST
platform by two Ani3D libraries, Ani3D-MBA and Ani3D-FEM.

The main purpose of the Ani3D-MBA library is generation of conformal
tetrahedral meshes which are quasi-uniform in a given metric. Additionally, the
library provides tools to read/write a tetrahedral mesh from/to the disk in a
specific Ani3D format and to perform its uniform mesh refinement by splitting
each tetrahedron into 8 sub-tetrahedra.

The Ani3D-FEM library provides a flexible interface to generate a local fi-
nite element discretization (local matrix and right-hand side vector) on a mesh
tetrahedron and to assemble the local discretizations into a global system of
grid equations. Importantly, the local discretization may involve different types
of finite elements: for instance, the local matrix for the Stokes problem may
exploit quadratic basis functions for velocity and linear basis functions for pres-
sure unknowns. Our finite element extension of the INMOST platform uses a
user-defined subroutine FEM3Dext where the local finite element matrix is gen-
erated. The library Ani3D-FEM is equipped with a great number of examples of
this subroutine for various applications. The rules for creation of the subroutine
FEM3Dext and respective examples can be found in Ani3D documentation [1]. In
particular, the user should specify explicitly the order of cell elements collocating
the user’s finite element basis functions. For instance, quadratic basis functions
have four degrees of freedom collocated at the vertices of the tetrahedron and six
degrees of freedom collocated at the mid-edges of the tetrahedron. Also, the user
may transfer user data to the subroutine FEM3Dext with the help of special work-
ing arrays. This feature can be used for acquiring the solution from the previous
time step which is inevitable for unsteady time stepping implementations.

3 INMOST platform

The INMOST software platform [2] is instrumented for creating and storing dis-
tributed general conformal grids with arbitrary polyhedral cells, parallel assem-
bling of systems of grid equations and their parallel solution. However, INMOST
does not provide software for generation and assembling of local finite element
discretizations. In order to add to INMOST the finite element environment from
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Ani3D-FEM, we take advantage of Mesh class, Solver class, and Sparse::Matrix
class of INMOST.

The Mesh class is designed for storing distributed grids. It contains a number
of cells consisting of nodes, faces, edges. In parallel mode each processor has a
sets of “owned” and “shared” elements and a set of “ghost” elements. Each
“ghost” element in fact is the copy of an element owned by another processor
and marked as “shared” there. These elements are used for the construction
of overlapping communication layers between processors. We note that some
cell can be “ghost” for Processor A, but its node/edge/face can be owned by
Processor B.

The important data structure of INMOST is Tag which is used to connect
any data with a mesh element, i.e. cell, face, edge, or node. The simplest case
of tagged data is a real or integer array associated with every mesh element
of particular type (e.g. every edge). The main function of Tag is to provide
automatic exchanges of tagged data between neighboring processors.

The important feature of Sparse::Matrix class is that it stores the matrix
by rows in parallel regime. Processor B cannot add entries to a row owned by
Processor A. In order to assemble local matrices in parallel, one has to use special
numbering of rows.

No special features of Solver class will be used for our purposes. By this
reason, any of five innner linear solvers or five external linear solvers from PETSc,
Trilinos and SuperLU can be exploited in the same interface.

The detailed description of INMOST software platform can be found
in [3,4,5].

4 Parallelization technology

In this section we present technological details of integration of the Ani3D uni-
form mesh refinement and the Ani3D local finite element matrix generation into
the INMOST platform.

The first part of the Ani3D–INMOST technology allows us to generate huge
meshes on multi-processor systems. The major steps are reading the initial mesh,
its partitioning, refinement, and merging the refined submeshes into a global
distributed mesh. Reading the mesh is performed by a standard Ani3D-MBA
library routine on the root processor. The result of the reading, the object IN-
MOST::Mesh, is processed by one of INMOST partitioning algorithms (e.g.,
ParMETIS [6] partitioning) and redistributed among available processors. Each
submesh is refined independently. Parallel multilevel mesh refinement requires
mesh conformity control. The uniform refinement function in Ani3D guaranties
this property provided that the initial (coarse) submeshes form a conformal
global mesh and the number of refinement levels is the same on all processors.
Merging the fine submeshes removes duplicate nodes, edges, and faces in the
global fine mesh. Once the fine submeshes are generated and processed to con-
stitute the global conformal mesh, we construct an additional layer of “ghost”
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cells. This layer is needed for correct assembling of the global finite element
matrix.

The second part of the integrated Ani3D–INMOST software initializes the
INMOST tags and data which will be used in assembling of local finite ele-
ment matrices generated by Ani3D-FEM library. First, all mesh elements in-
volved in the discretization are numbered within the global mesh. INMOST
function AssignGlobaID numbers the respective elements (cells and/or faces,
edges, nodes) marked by appropriate mask. Second, for all globally numbered
elements a special tag is created, the size of the tag in each cell being equal to
the number of finite element degrees of freedom associated to the mesh element.
Finally, the tags are synchronized between processors. Global numbering and
synchronized tags provide easy recovering of the global matrix order as well as
the order of matrices owned by processors. Importantly, flexibility for numbering
degrees of freedom within INMOST allows the user to generate distributed ma-
trices with desirable ordering. The proper ordering may improve the performance
of INMOST linear solvers.

The third part of the Ani3D–INMOST technology assembles the local matri-
ces generated on each tetrahedral cell by the user-defined Ani3D-FEM routine
FEM3Dext. On each processor, INMOST-based assembling selects rows of each
local matrix which correspond to owned (by the processor) mesh elements, and
writes the respective entries to the global matrix and the right-hand side vector.

Once the global system is assembled, any INMOST parallel linear solver can
be applied to the solution of the distributed global linear system.

5 Parallel solution of model hydrodynamic problems

5.1 Stokes problem

We consider the finite element solution of the Stokes problem in a rectangular
3D channel with a backward step. We impose the non-homogeneous Dirichlet
boundary condition (Poiseuille’s profile) at the inflow boundary, the homoge-
neous Neumann boundary condition at the outflow boundary, and the homo-
geneous Dirichlet boundary condition (no-slip, no-penetration) on the channel
walls. A sequence of three quasi-uniform tetrahedral meshes is considered. The
coarsest mesh S0 with 25113 cells (see Figure 1) is uniformly refined to get more
finer meshes S1 and S2 with 200904 and 1607232 cells, respectively.

The minimal order Taylor–Hood finite elements are used for the discretization
of the Stokes problem. The pressure p is approximated by continuous piecewise
linear functions with nodal degrees of freedom, the velocity v is approximated
by continuous piecewise quadratic functions with degrees of freedom collocated
at nodes and mid-edges of the mesh (see Figure 2). The discretization method
results in a symmetric saddle-point matrix with zero diagonal pressure block:
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Fig. 1: The coarsest mesh S0

Fig. 2: Unknowns p and v associated with the vertices and edges of the tetrahe-
dral cell for P1-P2 finite element

vedge ∗ × ×
vnode × ∗ ×
pnode × × 0

The numerical experiments were performed on the INM RAS cluster [7] in
the x10core segment:

– Compute Node Arbyte Alkazar+ R2Q50;
– 20 cores (two 10-cores processors Intel Xeon E5-2670v2@2.50GHz);
– 64 GB RAM;
– SUSE Linux Enterprise Server 11 SP3 (x86 64).

Table 1 presents statistics for all three finite element problems.
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Table 1: The Stokes problems parameters
Problem name S0 S1 S2

Number of nodes 5187 36824 279903
Number of edges 31637 243079 1908542
Number of tetrahedra 25113 200904 1607232
Matrix size 115659 876533 6845238
Number of nonzeros 10751851 84374191 668849086

To solve the linear system with the saddle-point matrix, we used the BiCGstab
iterative solver preconditioned by the first order BIILU method [8,9]. In order to
avoid zero pivots during ILU factorization, on each processor pressure unknowns
are enumerated last so that the zero pressure block be the last diagonal block
[10]. Parameters of the BIILU method are as follows: the threshold parameter
for the conventional incomplete factorization ILU(τ) τ = 0.001 and the number
of overlap levels q = 2. The use of the conventional first order incomplete factor-
ization is more beneficial compared to the more robust second order incomplete
factorization ILU2(τ1, τ2) due to very large average number of nonzero elements
per matrix row (about 100, see Table 1). The stopping criterion for the iterations
is 1012-fold reduction of the initial residual.

The results of numerical experiments for problems S0, S1, and S2 are pre-
sented in Tables 2, 3, and 4, respectively. In these tables p denotes the number
of processors used, Tini, Tass, Tprec, and Titer are the times for the preliminary
data initialization, assembling of the linear system, preconditioner construction,
and performing iterations by the BiCGStab method, respectively, Niter stands
for the number of BiCGstab iterations, Dens specifies the preconditioner density
with respect to that of the original matrix of the system, PM is the number of
pivot modifications, Tsol = Tprec + Titer is the total linear system solution time,
while S = Tsol(1)/Tsol(p) is the actual speedup relative to the solution time on
one (Tables 2, 3) or four (Tables 4) processors. Table 4 does not contain data
for runs on 1 and 2 processors due to memory restrictions.

Table 2: The solution of S0 problem on p = 1, ..., 32 processors
p Tini Tass Tprec Titer Niter Dens PM Tsol S

1 0.06 8.77 3.30 4.26 102 0.81 0 7.56 1.00
2 0.04 5.72 2.27 3.27 132 0.96 0 5.54 1.36
4 0.03 3.95 1.57 2.34 152 1.18 0 3.91 1.93
8 0.02 2.25 1.19 1.81 172 1.53 5 3.00 2.52
16 0.02 1.63 1.20 1.40 182 2.01 3 2.83 2.67
32 0.02 1.49 1.50 1.33 182 2.80 10 2.83 2.67

We do not observe a slowdown even for the solution of system with the
smallest matrix S0 on 32 processors when approximately 5000 matrix rows are
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Table 3: The solution of S1 problem on p = 1, ..., 32 processors
p Tini Tass Tprec Titer Niter Dens PM Tsol S

1 0.38 69.07 31.41 97.20 242 0.85 0 128.61 1.00
2 0.28 40.97 20.30 76.88 322 0.93 0 97.18 1.32
4 0.21 25.31 12.76 47.88 332 1.03 0 60.64 2.12
8 0.14 13.76 7.83 28.68 332 1.15 1 36.51 3.52
16 0.10 8.37 4.77 18.46 362 1.37 3 23.23 5.53
32 0.06 5.09 4.12 12.70 402 1.65 8 16.82 7.64

Table 4: The solution of S2 problem on p = 4, ..., 32 processors
p Tini Tass Tprec Titer Niter Dens PM Tsol S

4 1.48 181.05 142.29 1484.02 722 0.97 0 1626.31 1.00
8 0.90 94.03 76.01 847.62 802 1.03 0 923.63 1.76
16 0.58 52.03 72.70 481.50 802 1.10 2 554.20 2.93
32 0.37 29.23 26.88 288.73 802 1.21 2 315.61 5.15

associated with each processor. For the moderate size matrix S1 the maximal
speedup is 7.64, while for the largest matrix S2 the speedup is 5.15 when the
number of processors increases from 4 to 32.

5.2 Unsteady convection–diffusion problem

In the second test we consider the finite element solution of an unsteady convection–
diffusion problem in a cubic domain. We impose homogeneous Dirichlet bound-
ary conditions on all boundaries of the cube, except a patch centered at one
cube face. In the patch the concentration is set to one. The diffusion coefficient
is D = 10−4, the convection field is the constant vector v = (1, 0, 0). The prob-
lem coefficients imply tongue-type propagation of the concentration in time and
space (see Fig. 3). The initial quasi-uniform tetrahedral mesh L0 with 13952
cells is uniformly refined one and two times to produce meshes L1 and L2, re-
spectively. The unknown concentration is approximated by continuous piecewise
linear basis functions with nodal degrees of freedom. The finite element dis-
cretization of the convection operator is stabilized by the Streamline Upwind
Petrov–Galerkin (SUPG) method. The second order implicit backward differen-
tiation formula (BDF) scheme is used for time stepping. The problem is solved
for the time period [0; 0.5] with time step ∆t = 0.015.

The numerical experiments were performed on the same computational sys-
tem with the same computational method as in the previous test. Table 5
presents statistics for all three finite element problems on meshes L0, L1, and
L2.

The time measurements for the solution of problems L0, L1, and L2 are
presented in Tables 6, 7, and 8, respectively. In these tables p denotes the number
of processors used, Tini, Tass, and Tsol, are the times for the preliminary data
initialization, cumulative time of assembling the linear systems for all time steps,
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Fig. 3: The concentration at time t = 0.5

Table 5: The problems parameters
Problem name L0 L1 L2

Number of nodes 20417 155905 1218561
Number of tetrahedra 111616 892928 7143424
Matrix size 20417 155905 1218561
Number of nonzeros 291393 2281217 18053121

and cumulative time of the solution of all linear systems, respectively. In addition,
TΣ is the total problem solution time for all time steps and

S =
Tsol(1) + Tass(1) + Tini(1)

Tsol(p) + Tass(p) + Tini(p)

is the actual speedup relative to the solution time on one processor.

Table 6: The solution of problem on mesh L0 on p = 1, ..., 32 processors
p Tini Tass Tsol TΣ S

1 2.87 62.68 3.27 68.82 1.00
2 1.93 40.45 2.05 44.43 1.54
4 1.29 26.94 1.24 29.47 2.33
8 0.82 16.76 0.76 18.34 3.75
16 0.58 11.91 0.53 13.02 5.28
32 0.45 8.89 0.55 9.89 6.95

Similarly to the solution of the Stokes problem, we do not observe a slowdown
even for the smallest matrix L0 on 32 processors (when less than 700 matrix rows
are associated to a processor). For the moderate size matrix L1 the maximal
speedup is 11.77, while for the largest matrix L2 the speedup is 19.24. This
test shows good scalability of the Ani3D-extension of the INMOST platform for
unsteady problems.
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Table 7: The solution of problem on mesh L1 on p = 1, ..., 32 processors
p Tini Tass Tsol TΣ S

1 26.16 552.87 33.86 612.89 1.00
2 16.48 327.93 21.31 365.72 1.67
4 9.83 197.89 12.19 219.91 2.78
8 5.75 114.81 7.28 127.84 4.79
16 3.56 73.57 4.03 81.16 7.55
32 2.31 47.28 2.45 52.04 11.77

Table 8: The solution of problem on mesh L2 on p = 1, ..., 32 processors
p Tini Tass Tsol TΣ S

1 436.82 5692.31 723.23 6852.36 1.00
2 169.17 2628.09 258.71 3055.97 2.24
4 94.33 1461.24 147.30 1702.87 4.02
8 53.62 874.21 91.24 1019.07 6.72
16 31.52 522.99 53.28 607.79 11.27
32 17.60 308.84 29.61 356.05 19.24

Conclusion

We presented the Ani3D-extension of the parallel platform INMOST. The ex-
tension widens the functionality of INMOST by the finite element and meshing
libraries of the Ani3D software package. Two numerical examples demonstrated
the efficiency of the presented approach for the parallel solution of two model
hydrodynamic problems.
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