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Abstract. The paper is dedicated to optimizing numerical algorithms to solve 

wave tomography problems by using supercomputers. The problem is formulat-

ed as a non-linear coefficient inverse problem for the wave equation. Due to the 

huge amount of computations required, solving such problems is impossible 

without the use of high-performance supercomputers. Gradient iterative meth-

ods are employed to solve the problem. The gradient of the residual functional 

is calculated from the solutions of the direct and the "conjugate" wave-

propagation problems with transparent boundary conditions. Two formulations 

of the transparency condition are compared. We show that fourth-order finite-

difference schemes allow us to reduce the size of the grid by a factor of 1.5–2 in 

each coordinate compared to second-order schemes. This makes it possible to 

significantly reduce the amount of computations and memory required, which is 

especially important for 3D problems of wave tomography. The primary appli-

cation of the method is medical ultrasonic tomography. 

Keywords: Ultrasound · Coefficient inverse problems · Supercomputer · Wave 

tomography · Finite-difference schemes 

1 Introduction 

Currently, intensive works are being carried out to develop new tomographic devices 

that use wave radiation sources. The most promising technology is ultrasonic tomog-

raphy. The most important applications of ultrasonic tomography are in medical re-

search, primarily the differential diagnosis of breast cancer, which is one of the most 

pressing issues of medical diagnostics. Wave tomography technology can also be 

used in many other applications, such as seismic studies, non-destructive testing, and 

medical ultrasonic imaging [1-3]. 

One of the problems in the development of ultrasonic tomography is associated 

with the nonlinearity of inverse problems of wave tomography. These inverse prob-

lems are formulated as coefficient inverse problems for the wave equation [4,5]. The 

developments of ultrasonic tomography devices are currently at the stages of model-

ling and prototypes [6-8]. These works employ simplified mathematical models. The 

most promising approach is to develop methods for solving inverse problems of wave 
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tomography under models that account for both wave diffraction effects (diffraction, 

refraction, multiple scattering) and absorption. The derivation of the gradient of the 

residual functional of the coefficient inverse problem, as obtained in [9-14], was the 

breakthrough result in this field. 

The approximate gradient-based methods for solving inverse problems of ultrason-

ic tomography have been developed in [15-19]. The developed algorithms are de-

signed for supercomputers. These algorithms implement iterative gradient methods to 

minimize the residual functional between the wave field measured experimentally and 

the numerically simulated wave field. To calculate the gradient of the residual func-

tional at each iteration of the method, it is necessary to solve the "direct" problem of 

simulating the wave propagation process in an inhomogeneous medium in forward 

time and the "conjugate" problem in reverse time. The efficiencies of the developed 

numerical methods were evaluated by benchmarking numerous model problems on 

the "Lomonosov" supercomputer. The developed methods allow effective paralleliza-

tion. The numerical algorithms practically linearly scale with the number of proces-

sors in CPU- and GPU-based systems. 

The aim of this study is to optimize the developed numerical algorithms. The first 

way to optimize the algorithms is to use a finite-difference scheme. The numerical 

methods for solving the inverse problem of wave tomography that have been imple-

mented in the previous works are based on the finite-difference time-domain (FDTD) 

method that provides a second-order approximation of the wave equation. The FDTD 

method has been chosen because it has a very large potential for relatively simple 

parallelization of computations. Because of the large amount of computations, highly 

parallel computing is required. Supercomputer technologies drastically reduce the 

computation time required to solve inverse problems. However, one of the issues is 

the accuracy of the calculations. To solve the ill-posed inverse problems of wave 

tomography, very high accuracy is required. For second-order FDTD schemes, this 

leads to the need to use very large grids. With the increase of the sounding frequen-

cies, the volume of data becomes unacceptably large. This is especially true for 3D 

problems, where high-performance GPU processors are required, and GPUs have a 

limited memory capacity. Additionally, there are numerical error accumulation issues 

associated with large grids. 

For second-order FDTD schemes, it is necessary to use at least n=1000 grid points 

in each coordinate for the numerical error to be no more than a few percent. In the 3D 

version of the method, this results in a 10003-point grid. Even when solving such 

problems on powerful GPU clusters, such an amount of data does not fit into the in-

ternal memory of the GPU devices. Another problem is the dependence of the number 

of operations in the gradient iterative algorithms on the number of grid points, which 

is of the form O(n4). A fourth power of n means that whereas it takes one hour to 

solve a 3D problem for n=400 on a GPU cluster, it would take approximately 5 hours 

to solve a problem for n=600. Therefore, one of the ways to optimize the algorithms is 

to use higher-order approximations. As will be shown, using a fourth-order approxi-

mation scheme results in a decrease in the number of grid points n by a factor of 1.5–

2, which significantly reduces the computation time. 
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The second important issue is the problem of boundary conditions. This problem 

arises because we have to solve direct and inverse problems in a bounded domain. As 

a result, reflection of waves occurs at the boundary of the computational domain. In 

this paper, two methods of implementing a “transparent” boundary are considered. 

The third issue is that the inverse problem of wave tomography typically has in-

complete input data — the sources and detectors are not located on all sides of the 

studied object. In ultrasonic mammography applications, the data incompleteness 

results from the fact that we cannot place sources and detectors at the patient’s chest-

wall side. Thus, it is an incomplete-data tomography. 

2 Formulation of the Inverse Problem of Ultrasonic 

Tomography with Incomplete Data and Solution 

Methods 

Let us consider the "direct" problem of computing the acoustic pressure u(r,t) for the 

time (0; T) in the region NR  (N = 2, 3), bounded by the surface ∂Ω (Fig. 1), with 

a point source at the point r0: 

 )()()()()( 0 tgt,ut,uc tt rrrrr  . (1) 

Let us assume that u(r,t) satisfies the zero initial and boundary conditions 

 0)0()0(  t,ut,u t rr ,   0 |t,un r . (2) 

Here, c-0.5(r) = v(r) is the sound speed in the medium, NRr ; Δ is the Laplace opera-

tor with respect to r. The pulse generated by the source is described by the function 

g(t);    |t,un r  is the derivative along the normal to the boundary ∂Ω. It is assumed 

that the inhomogeneities of the medium are sound-speed variations and are localized 

within the studied object G. Outside of the object, v(r) = v0 is constant and v0 is 

known. The acoustic pressure is measured at the boundary of the domain R, GR. 

The sources insonify the studied object from different directions. We assume that the 

sources and the region R are located far enough from the boundary ∂Ω such that the 

conditions (2) are satisfied. 

Fig. 1 illustrates the arrangement of sources and detectors in the two-dimensional 

inverse problem of wave tomography. The number 1 denotes the positions of the 

sources of ultrasound waves, and the measurements are taken at the boundary ∂R. The 

studied object G is located inside the domain R, which is filled with a homogeneous 

medium with a known sound speed v0. 
The inverse problem consists of determining the sound speed c(r) from the experi-

mental data )t,s(U measured at the boundary R of the domain R during the time 

)T,(0  with different positions 0r  of the source. In the formulation with incomplete 

data, the acoustic pressure )t,s(U  is not measured on the whole boundary ∂R. The 
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inverse problem with incomplete data can be formulated as a problem of minimizing 

the residual functional 

 

Fig. 1. The scheme of the 2D experiment. 
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Let us consider another problem, which we call "conjugate" to the "direct" prob-

lem (1)–(2): 
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where E(r,t) from (4) is derived from the measured data U(s,t) and the solution u of 

the direct problem (1)–(2). Then, as shown in [9,11,14], the gradient of the functional 

(3) has the form 
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where uj is the solution of the "direct" problem (1)–(2) and wj is the solution of the 

"conjugate" problem (5)–(6) for the j-th position of the source.  

In contrast to [9,11,14], in the above formulation, the experimental data may be ab-

sent on some part of the boundary surrounding the object. Such incomplete data prob-
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lems are typical in ultrasonic tomography. For example, in ultrasonic mammography 

the data cannot be measured at the chest-wall side. Nevertheless, the expression for 

the gradient (7) is mathematically exact. The formulations of the "direct" and "conju-

gate" problems considered in this paper also differ from those used in previous works 

[9,11,14]. 

3 Numerical Algorithms for Solving Inverse Problems of 

Ultrasonic Tomography 

3.1 Finite-Difference Approximations of the Wave Equation  

To solve the coefficient inverse problem for the wave equation, we used a finite-

difference time-domain method (FDTD). In this formulation, solving the differential 

wave equation reduces to solving finite-difference equations. Let us present the dis-

cretization scheme of the problem in the two-dimensional case. On the computational 

domain defined by the spatial coordinates (x, y) and the time t, we introduce a uniform 

discrete grid with a space step of h and a time step of τ. To approximate the second-

order partial derivatives in equation (1), we use second-order finite differences. We 

obtain the following explicit finite-difference scheme for equation (1) for the region 

that does not contain any sources: 
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  is the discrete Laplacian, k
iju  are 

the values of u(r,t) at the point (i, j) at the time step k, and сij are the values of c(r) at 

the point (i, j). The parameters h and τ are connected by the Courant stability condi-

tion 250 /hc .   for a 2D problem. The “conjugate” problem (5)–(6) is computed 

using a similar FDTD scheme. 

This explicit 2nd-order FDTD scheme for the wave equation is the simplest and is 

quite effective for the numerical simulation of wave propagation on a supercomputer. 

Nevertheless, when the ultrasound pulse propagates distances much larger than the 

wavelength, the errors of the finite-difference approximation accumulate, which leads 

to dispersion of the wave. One of the ways to overcome the numerical dispersion is to 

increase the number of grid points. Model calculations showed that for typical prob-

lems of ultrasonic mammography, 25–30 grid points per wavelength are required to 

obtain sufficient precision. This means that the computational grid size should be 

approximately n=1000 points in each spatial coordinate and in time. In the 2D case, 

such grid sizes do not pose a problem for modern supercomputers. However, in the 

3D case, the amount of computation grows as n4 and the required memory capacity 

grows as n3. A large grid size in the 3D case requires a very large number of compu-

ting nodes and faces memory size limitations on the GPU processors. 
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One possible approach to resolving this issue in ultrasonic tomography problems is 

to increase the accuracy of the finite-difference approximation, which would reduce 

the size of the grid, the amount of computations and the required memory capacity 

while maintaining the accuracy of the calculations. In this paper, the use of fourth-

order FDTD schemes is considered. Model calculations were performed to compare 

the performances of second- and fourth-order FDTD schemes for the wave tomogra-

phy problem. 

  

Fig. 2. The stencil of the second-order  

2D FDTD scheme. 
Fig. 3. The stencil of the fourth-order  

2D FDTD scheme. 

Following the work [20], we construct a 2D FDTD scheme that provides fourth-order 

accuracy with respect to the spatial coordinates. This FDTD scheme is shown in Fig. 

3. It has the following general form: 
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For this scheme to approximate the wave equation to the fourth order, the parameters 

must satisfy the following relations: 

343214  eda ,   edb 168  ,  

12122  edc ,   560242 2  edf . 

For the scheme to be direction-independent up to the sixth order of accuracy, an 

additional condition 60122  ed  must be satisfied. The parameter hv  is 

determined from the Courant stability condition. The choice of the parameters d and e 

specifies various variants of the scheme. In this paper, for simplicity, we assume that 

d=0; therefore, e=-1/120. The variant with d=0 and e=0 reduces the accuracy of the 

scheme but also reduces the computation time because the diagonal elements are ex-

cluded from the calculations.  

Fig. 5 shows the results of the numerical simulations for the 2D case. The propaga-

tion of a short pulse in a homogeneous medium was computed using the 2nd-order 
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scheme (8) and the 4th-order scheme (9). The cross-sections of the pulse generated by 

the source according to formula (1) has the waveform shown in Fig. 4. Fig. 5 shows 

the cross-sections of the wave function u(r,t) perpendicular to the wave front at the 

same time step for the 2nd-order scheme (solid line) and the 4th-order scheme (dashed 

line). The X-axis shows the grid-point number. The computational domain size is 

200×200 mm, and the number of grid points is 350×350. The central wavelength of 

the pulse is 7 mm, so there are approximately 12 grid points per wavelength. 

   

Fig. 4. Waveform of the sounding  

pulse. 
Fig. 5. Cross-sections of the propagating 

waves for the 2nd-order (solid line) and 4th-

order (dashed line) FDTD schemes. 

The time moment in Fig. 5 is chosen so that the wave propagation distance reaches 

approximately 200 mm. It is evident that, for the 4th-order scheme, the distortion of 

the pulse is insignificant and that, for the 2nd-order scheme, the grid step turned out to 

be too large, which resulted in the distorted waveform and appearance of a "tail". If 

we use a grid that is two times finer in the 2nd-order scheme, we can obtain a wave-

form similar to that in Fig. 5 for the 4th-order scheme. Thus, the use of the 4th-order 

scheme makes it possible to reduce the grid size by a factor of 1.5–2 in each coordi-

nate compared to the 2nd-order scheme for the problem of wave tomography, given 

parameters that are typical for medical imaging. 

3.2 Transparency Conditions for the Boundary of the Computational 

Domain 

When solving the "direct" (1)–(2) and "conjugate" (5)–(6) problems numerically, 

the boundary conditions must be applied at the boundary ∂Ω. The boundary is as-

sumed to be located far enough from the domain R such that during the time T the 

waves from the sources do not reach the boundary. In this case, the zero boundary 

conditions (2) are automatically satisfied. When carrying out the calculations, we can 

either choose a sufficiently large computational domain Ω or assume that Ω =R, 

which has a much smaller volume, and apply the non-reflecting ("transparent") 

boundary conditions. 
In this paper, the numerical simulations are implemented with approximate non-

reflecting boundary conditions. There are various options for the "transparency" con-
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ditions [21-25]. The first option considered in this study is to create a border zone 

with a width of M grid points. Within this zone, an absorbing term a(r)ut (r,t) is added 

to the left-hand side of the wave equation (1). The absorption coefficient quadratically 

increases for the points closer to the boundary ∂R. 

The second option is to apply non-reflecting boundary conditions (NRBC) at the 

boundary of the computational domain. The exact NRBC formulation is non-local and 

is quite difficult to calculate. The first-order approximation of the NRBC has the form 

RtRn u|u|v    and is exact for incident waves propagating perpendicular to the 

boundary. In this study, we use a second-order approximation, which has the form 

 0
2

1
2

2

2

22
















y

uv

t

u

vtx

u
. (10) 

Fig. 6 shows the results of the 2D numerical simulations of a reflected pulse that 

has a width of 10 mm (25 grid points) and amplitude of 1. Fig. 6a shows the results of 

the first method (absorbing layer). The width M of the absorbing layer is 50 points in 

this case. Fig. 6b shows the results of the second method (10). The solid line shows 

the cross-section of the incident wave propagating perpendicular to the boundary, and 

the dashed line shows that of the wave propagating at a 45-degree angle. 

  
 a) b) 

Fig. 6. The reflected waves for the 90-degree angle of incidence (solid line) and the 45-degree 

angle (dashed line): а) using an absorbing layer, b) using a 2nd-order approximate NRBC. 

The X-axis shows the grid-point number, and the boundary is located at the right 

edge of the plots. The maximum amplitude of the reflections in Fig. 6a is 5%, and in 

Fig. 6b, it is 3%. In the second case, the reflections for the 90-degree angle of inci-

dence are practically absent. In the first case, the reflected signal is almost 10 times 

wider than the original. 

As follows from the numerical simulations, both methods allow us to approximate 

the boundary transparency condition with good accuracy, including steep angles of 

incidence. This made it possible to significantly reduce the size of the computational 

domain compared to the size at which the wave does not reach the boundary in time 

T. Even if a supercomputer is available, the reduction of the grid size is very im-
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portant, especially in the 3D case, where the number of operations grows as n4 and the 

data volume grows as n3. 

3.3 The Iterative Process of Solving the Inverse Problem  

The following iterative process was used to solve the inverse problem numerically. As 

the initial approximation, we use the value c(0)=c0=const, which corresponds to the 

speed of sound in pure water, v0=1500 m·s-1. At each iteration (m), the following ac-

tions are performed: 

1. The “direct” problem (1)–(2) is solved for the current approximation (m)c . The 

propagation of the wave u(m)(r,t) is computed using formula (8) or (9). The values 

of u(r,t) at each detector are computed. 

2. The residual (m)
  =(u(m)(r)) is computed using formula (3).  

3. The “conjugate” problem (5)–(6) is solved for w(m)(r,t) The gradient 'C(u
(m)

(r)) 

is computed using formula (7) for all sources. 

4. The current approximation is updated: c
(m+1)

 =c
(m)

 +
 (m)
'C(u

(m)
(r)). The pro-

cess returns to step 1. 

The iteration process is stopped if the residual becomes smaller than some predeter-

mined value, which corresponds to the a priori known precision of the measured data. 

The step of the gradient descent 
(m) 

is chosen based on a priori considerations. De-

termining the step more precisely requires performing additional iterations and would 

increase the computation time by a factor of 2 or more. If the residual 
(m) 

at the 

current iteration becomes
 
larger that 

(m-1)
, the step 

(m) 
is reduced by a factor of 

1.5. 

4 Numerical Simulations of Ultrasonic Tomography for 

the Second- and Fourth-Order FDTD Schemes 

The numerical simulations for the 2D ultrasonic tomography problem were performed 

according to the scheme shown in Fig. 1. First, the direct problem of wave propaga-

tion through the simulated test object was solved using the 4th-order FDTD scheme 

(9). The wave field at the perimeter of the square (Fig. 1) was recorded and used as 

simulated measurement data to solve the inverse problem. The inverse problem was 

solved using both the 4th- and 2nd-order FDTD schemes. The approximate non-

reflecting boundary condition (10) was applied. 

The central wavelength of the pulse was 7 mm, the sound-speed range in the test 

object — 1430–1600 m·s-1, the sound speed in the environment — 1500 m·s-1, the 

size of the computational domain — 200×200 mm, and the size of the FDTD grid —

350×350 points. In the numerical simulations, we used eight sources that were located 

in the middle of each side of the square and in the corners of the square, as shown in 

Fig. 1. The detectors were located at the sides of the square with a pitch of 0.6 mm.  
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Fig. 7a shows an image of the simulated test object, Fig. 7b shows the image re-

constructed using the 4th-order FDTD scheme, and Fig. 7c shows the image recon-

structed using the 2nd-order FDTD scheme. 

 
 a) b) c) 

Fig. 7. a) Simulated test object, b) the image reconstructed using the 4th-order FDTD scheme, 

c) the image reconstructed using the 2nd-order FDTD scheme. 

Comparing Fig. 7b and 7c, we can see that the numerical dispersion shown in Fig. 

5 becomes significant for the 2nd-order FDTD scheme and significantly deteriorates 

the image quality, thus producing numerous artefacts. Using the 4th-order scheme 

allows the reconstruction of not only the shapes of irregularities but also the sound-

speed function with high precision. Even small inclusions of size of 2–3 mm are re-

constructed, and the precision of the sound speed reconstruction is 10 m·s-1 or better. 

The computing time for the 2D problem using eight computing cores of the “Lo-

monosov-1” supercomputer was approximately 2 hours for 400 iterations of the gra-

dient method. Fig. 7c shows the result obtained after 150 iterations; then, the process 

stopped because the residual functional did not decrease any further. 

The developed program for solving ultrasonic tomography problems is realized in 

the C++ language, designed for operation on high-performance cluster computer sys-

tems under the control of one of the Linux OS clones. For interprocessor exchange, 

the MPI interface was selected. Computations were carried out on the “Lomonosov-

1” supercomputer of the Lomonosov Moscow State University Supercomputer Center 

on CPU Intel Xeon X5570 2.93GHz processors, 1.5 GB of memory per core, 8 x86 

cores per node, Infiniband [26].  

When carrying out computation in the problem under consideration on the CPU of 

the cluster system, it is natural to have a two-level parallelization based on the number 

of sources at the first level and then decomposition of the calculation area at the se-

cond level. This approach was implemented when performing computations with the 

2nd-order FDTD scheme for 7-point stencil and showed high efficiency and scalability 

up to several tens of thousands of computing cores [14]. Moreover, scalability by 

sources is practically linear, since calculations for different sources are practically 

independent. When parallelizing the decomposition of the calculation area, it is neces-

sary to perform data exchanges between neighboring regions, so the decomposition 

into too small areas is impractical. In the present work, in computations with the 4th-
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order FDTD scheme for 27-point stencil, parallelization by sources was performed, 

which showed linear scalability. Parallelization by the technique of domain decompo-

sition is supposed to be implemented in subsequent works.  

As follows from the results of the work, using the 4th-order FDTD scheme allows 

us to reduce the size n of the computational grid by a factor of 1.5–2 compared to the 

2nd-order scheme while maintaining the accuracy of the calculations. This fact is very 

important for inverse problems of wave tomography, especially in the 3D case, be-

cause the computation time increases as n4. Although the increase of the stencil size 

causes approximately a two-fold increase of the computation time per grid point and a 

two-fold increase in inter-processor communications if the domain is divided among 

multiple processors, the number of grid points decreases by at least a factor of 3. 

Moreover, for GPU processors, the memory requirement is a very important fac-

tor. For efficient GPU computing, all of the data used in the FDTD scheme must re-

side in the on-board memory of the GPU device. The volume of these data grows as 

n3 in the 3D case. The memory capacity limits the problem size to ~5003 points per 

computing node. This number of points is insufficient for precise calculations using a 

2nd-order finite-difference scheme. 

5 Conclusions 

This paper is concerned with the optimization of numerical algorithms for solving the 

inverse problem of wave tomography using supercomputers. To reduce the computa-

tional grid dimensions, required memory capacity and computation time and to im-

prove the accuracy of the calculations, the use of higher-order finite-difference 

schemes is proposed. It is shown that the fourth-order FDTD scheme allows us to 

decrease the grid size by a factor of 1.5–2 in each dimension compared to a second-

order scheme while preserving the accuracy of the calculations. This approach signif-

icantly reduces both the computation time and the required memory capacity. 

An important issue for numerical methods is the problem of boundary conditions 

for solving direct and inverse problems in a bounded domain. The article discusses 

two approximate methods that implement boundary "transparency". It is shown that 

both methods allow precise calculations and have significantly smaller computational 

complexities than exact non-reflecting boundary conditions. 

The inverse problem is formulated as the incomplete-data tomography problem, 

where the sources and the detectors cannot be located on all sides of the examined 

object. To solve this important problem mathematically strictly, a method of calculat-

ing the gradient of the residual functional is proposed, which includes solving special 

"direct" and "conjugate" problems. 

The proposed optimization scheme of the numerical algorithms is relevant due 

to the very large amount of computations required to solve the problems of wave 

tomography. The method is easy to implement on supercomputers.  
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