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Abstract. In this paper, we describe the Globalizer software system for solving 

global optimization problems. The system implements an approach to solving 

the global optimization problems using the block multistage scheme of the di-

mension reduction, which combines the use of Peano curve type evolvents and 

the multistage reduction scheme. The scheme allows an efficient parallelization 

of the computations and increasing the number of processors employed in the 

parallel solving of the global optimization problems many times.  
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1 Introduction 

The development of optimization methods that use high-performance computing sys-

tems to solve time-consuming global optimization problems is an area receiving ex-

tensive attention. The theoretical results obtained provide efficient solutions to many 

applied global optimization problems in various fields of scientific and technological 

applications. At the same time, the practical software implementation of these algo-

rithms for multiextremal optimization is quite limited. Among the software for the 

global optimization, one can select the following systems: 

 LGO (Lipschitz Global Optimization) [1] is designed to solve global optimization 

problems for which the criteria and constraints satisfy the Lipschitz condition. The 

system is a commercial product based on diagonal extensions of one-dimensional 

multiextremal optimization algorithms. 

 GlobSol [2] is oriented towards solving global optimization problems as well as 

systems of nonlinear equations. The system includes interval methods based on the 

branch and bound method. There are some extensions of the system for parallel 

computations, and it is available to use for free. 
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 LINDO [3] is features by a wide spectrum of problem solving methods that can be 

used for these include linear, integer, stochastic, nonlinear, and global optimization 

problems. The ability to interact with the Microsoft Excel software environment is 

a key feature of the system. The system is widely used in practical applications and 

is available to use for free. 

 IOSO (Indirect Optimization on the basis of Self-Organization) [4] is oriented 

toward solving of a wide class of the extremal problems including global optimiza-

tion problems. The system is widely used to solve applied problems in various 

fields. There are versions of the system for parallel computational systems. The 

system is a commercial product, but is available for trial use. 

 MATLAB Global Optimization Toolkit [5], includes a wide spectrum of methods 

for solving the global optimization problems, including multistart methods, global 

pattern search, simulated annealing methods, etc. The library is compatible to the 

TOMLAB system [6], which is an additional extension the widely-used MATLAB. 

It is also worth noting that similar libraries for solving global optimization prob-

lems are available for MathCAD, Mathematica, and Maple systems as well. 

 BARON (Branch-And-Reduce Optimization Navigator) [7], is designed to solve 

continuous integer programming and global optimization problems using the 

branch and bound method. BARON is included in the GAMS (General Algebraic 

Modeling System) system used widely [8]. 

 Global Optimization Library in R [9] is a large collection of optimization methods 

implemented in the R language. Among these methods, there are stochastic and de-

terministic global optimization algorithms, the branch and bound method, etc. 

The list provided above is certainly not exhaustive – additional information on 

software systems for a wider spectrum of optimization problems can be obtained, for 

example, in [10], [11], [12], etc. Nevertheless, even from such a short list the follow-

ing conclusions can be drawn (see also [13]). 

 The collection of available global optimization software systems for practical use 

is insufficient. 

 The availability of numerous methods through these systems allows complex opti-

mization problems to be solved in a number of cases, however, it requires a rather 

high level of user knowledge and understanding in the field of global optimization. 

 The use of the parallel computing to increase the efficiency in solving complex 

time-consuming problems is limited, therefore, the computational potential of 

modern supercomputer systems is very poorly utilized. 

In this paper, a novel Globalizer software system is considered. The development 

of the system was conducted based on the information-statistical theory of multiex-

tremal optimization aimed at developing efficient parallel algorithms for global search 

– see, for example, [14–16]. The advantage of the Globalizer is that the system is 

designed to solve time-consuming multiextremal optimization problems. In order to 

obtain global optimized solutions within a reasonable time and cost, the system effi-

ciently uses modern high-performance computer systems. 
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The paper is further structured as follows. In Section 2, the general statement of the 

multidimensional global optimization problem is considered. In Section 3, the Global-

izer software system is presented and its architecture is described. In Section 4, the 

approaches to solving the multidimensional global optimization problem based on the 

information-statistical theory of multiextremal optimization is given. In Section 5, the 

results of applied problem solving with the Globalizer system are described. Finally, 

Section 6 presents the conclusion. 

2 Statement of Multidimensional Global Optimization Problem 

In this paper, the core class of optimization problems which can be solved using the 

Globalizer is examined. This involves multidimensional global optimization problems 

without constraints, which can be defined in the following way: 

φ(y) → inf,  y ∈ D ⊂ RN, (1) 
D = {y ∈ RN:  ai ≤ yi ≤ bi, 1 ≤ i ≤ N}, (2) 

i.e., a problem of finding the globally optimal values of the objective (minimized) 

function φ(y) in a domain D defined by the coordinate bounds (2) on the choice of 

feasible points y = (y1, y2, … , yN). 
If y∗ is an exact solution of problem (1) – (2), the numerical solution of the prob-

lem is reduced to building an estimate y0 of the exact solution matching to some no-

tion of nearness to a point (for example, ‖y∗ − y0‖ ≤ ε where ε > 0 is a predefined 

accuracy) based on a finite number k of computations of the optimized function val-

ues.  

Regarding to the class of problems considered, the fulfillment of the following im-

portant conditions is supposed: 

1. The optimized function φ(y) can be defined by some algorithm for the computation 

of its values at the points of the domain D.  

2. The computation of the function value at every point is a computation-costly op-

eration. 

3. Function φ(y) satisfy the Lipschitz condition: 

|φ(y1) − φ(y2)| ≤ L‖y1 − y2‖, where y1, y2 ∈ D, 0 < L < ∞, (3) 

that corresponds to a limited variation of the function value at limited variation of 

the argument.  

The multiextremal optimization problems i.e. the problems, which the objective 

function φ(y) has several local extrema in the feasible domain 𝐷 in, are the subjects 

of consideration in the present paper. The dimensionality affects the difficulty of solv-

ing such problems considerably. For multiextremal problems so called "curse of di-

mensionality" consisting in an exponential increase of the computational costs with 

increasing dimensionality takes place. 
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3 Globalizer Architecture 

The Globalizer considered in this paper expands the family of global optimization 

software systems successively developed by the authors during the past several years. 

One of the first developments was the SYMOP multiextremal optimization system 

[17], which has been successfully applied for solving many optimization problems. A 

special place is occupied by the ExaMin system [18], which was developed and used 

extensively to investigate the application of novel parallel algorithms to solve global 

optimization problems using high-performance multiprocessor computing systems. 

The program architecture of Globalizer system is presented in Fig. 1. 

 

Fig. 1. Program architecture of Globalizer system (Blocks 1-2, 5-7 have been implemented; 

Blocks 3-4 and 8-11 are under development) 

The structural components of the systems are: 

─ Block 0 is an external block. It consists of the procedures for computing the func-

tion values (criteria and constraints) for the optimization problem being solved. 

─ Blocks 1-4 form the optimization subsystem and solve the global optimization 

problems (Block 1), nonlinear programming (Block 2), multicriterial optimization 

(Block 3), and general decision making problems (Block 4). It is worth noting the 

successive scheme of interaction between these components – the decision making 

problems are solved using the multicriterial optimization block, which, in turn, us-

es the nonlinear programming block, etc. 
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─ Block 5 is a subsystem for accumulating and processing the search information; 

this is one of the main subsystems – the amount of search information for time-

consuming optimization problems may appear to be quite large on the one hand, 

but, on the other hand, the efficiency of the global optimization methods depends 

to a great extent on how completely all of the available search data is utilized. 

─ Block 6 contains the dimensional reduction procedures based on the Peano 

evolvents; this block also provides interaction between the optimization blocks and 

the initial multidimensional optimization problem. 

─ Block 7 organizes the choice of parallel computation schemes in the Globalizer 

system subject to the computing system architecture employed (the numbers of 

cores in the processors, the availability of shared and distributed memory, the 

availability of accelerators for computations, etc.) and the global optimization 

methods applied. 

─ Block 8 is responsible for managing the parallel processes when performing the 

global search (determining the optimal configuration of parallel processes, distrib-

uting the processes between computing elements, etc.). 

─ Block 9 is a management subsystem, which fully controls the whole computational 

process when solving global optimization problems. 

─ Block 10 is responsible for organizing the dialog interaction with users for stating 

the optimization problem, adjusting system parameters (if necessary), and visualiz-

ing and presenting the global search results. 

─ Block 11 is a set of tools for visualizing and presenting the global search results; 

the availability of tools for visually presenting the computational results enables 

the user to provide efficient control over the global optimization process. 

4 Globalizer Approach for Solving the Global Optimization 

Problems 

4.1 Methods of Dimension Reduction 

Globalizer implements a block multistage scheme of dimension reduction [18], which 

reduces the solving of initial multidimensional optimization problem (1) – (2) to the 

solving of a sequence of «nested» problems of less dimensionality. 

Thus, initial vector y  is represented as a vector of the «aggregated» macro-

variables 

y = (y1, y2, … , yN) = (u1, u2, … , uM) (4) 
where the i-th macro-variable ui is a vector of the dimensionality Ni from the compo-

nents of vector y taken sequentially i. e. 

𝑢1 = (𝑦1, 𝑦2, … , 𝑦𝑁1), 

𝑢2 = (𝑦𝑁1+1, 𝑦𝑁1+2, … , 𝑦𝑁1+𝑁2), … 

𝑢𝑖 = (𝑦𝑝+1, … , 𝑦𝑝+𝑁𝑖) where 𝑝 = ∑ 𝑁𝑘
𝑖−1
𝑘=1 , … 

(5) 

at that, ∑ Nk
M
k=1 = N. 

Using the macro-variables, the main relation of the well-known multistage scheme 

can be rewritten in the form  
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min
y∈D

φ(y) = min
u1∈D1

min
u2∈D2

… min
uM∈DM

φ(y), (6) 

where the subdomains Di, 1 ≤ i ≤ M, are the projections of the initial search domain 

D onto the subspaces corresponding to the macro-variables ui, 1 ≤ i ≤ M. 

The fact, that the nested subproblems  

φi(u1, … , ui) = min
ui+1∈Di+1

φi+1(u1, … , ui, ui+1), 1 ≤ i ≤ M, (7) 

are the multidimensional ones in the block multistage scheme is the principal differ-

ence from the initial scheme. Thus, this approach can be combined with the reduction 

of the domain 𝐷 (for example, with the evolvent based on Peano curve) for the possi-

bility to use the efficient methods of solving the one-dimensional problems of the 

multiextremal optimization [19]. 

The Peano curve 𝑦(𝑥) lets map the interval of the real axis [0,1] onto the domain D 

uniquely: 

{𝑦 ∈ D ⊂ RN} = {𝑦(𝑥): 0 ≤ 𝑥 ≤ 1}. (8) 
The evolvent is the approximation to the Peano curve with the accuracy of the or-

der 2−m where 𝑚 is the density of the evolvent. 

Application the mappings of this kind allows reducing multidimensional problem 

(1) – (2) to a one-dimensional one  

𝜑(𝑦∗) = 𝜑(𝑦(𝑥∗)) = 𝑚𝑖𝑛 {𝜑(𝑦(𝑥)): 𝑥𝜖[0,1]}. (9) 

4.2 Method for Solving the Reduced Global Optimization Problems 

The information-statistical theory of global search formulated in [14], [16] has served 

as a basis for the development of a large number of efficient multiextremal optimiza-

tion methods – see, for example, [20–23], [24–27], etc. Within the framework of in-

formation-statistical theory, a general approach to parallelization computations when 

solving global optimization problems has been proposed – the parallelism of compu-

tations is provided by means of simultaneously computing the values of the mini-

mized function φ(y) at several different points within the search domain D – see, for 

example, [15], [16]. This approach provides parallelization for the most costly part of 

computations in the global search process. 

Let us consider the general computation scheme of Parallel Multidimensional Al-

gorithm of Global Search that is implemented in Globalizer. 

Let us introduce a simpler notation for the problem being solved 

f(x) = φ(y(x)): x ∈ [0,1]. (10) 

Let us assume k > 1 iterations of the methods to be completed (the point of the 

first trial x1 can be an arbitrary point of the interval [a; b] – for example, the middle of 

the interval). Then, at the (k + 1)-th iteration, the next trial point is selected according 

to the following rules. 

Rule 1. To renumber the points of the preceding trials x1, … , xn  (including the 

boundary points of the interval [a; b]) by the lover indices in the order of increasing 

values of the coordinates, 

0 = x0 < x1 < ⋯ < xi < ⋯ < xk < xk+1 = 1 (11) 
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The function values zi = φ(xi) have been calculated in all points xi, i = 1, . . k. In 

the points x0 = 0 and xk+1 = 1  the function values has not been computed (these 

points are used for convenience of further explanation).  

Rule 2. To compute the values: 

𝜇 = 𝑚𝑎𝑥
1≤𝑖≤𝑘

|𝑧𝑖 − 𝑧𝑖−1|

𝛥𝑖
, 𝑀 = {

𝑟𝜇, 𝜇 > 0,
1,          𝜇 = 0,

 (12) 

where r > 1 is the reliability parameter of the method, Δi = xi − xi−1. 

Rule 3. To compute the characteristics for all intervals (xi−1; xi), 1 < 𝑖 < 𝑘 + 1, 

according to the formulae: 

Rule 4. To arrange the characteristics of the intervals obtained according to (13) in 

decreasing order 

R(t1) ≥ R(t2) ≥ ⋯ ≥ R(tk) ≥ R(tk+1) (14) 
and to select p intervals with the highest values of characteristics (p is the number of 

processors/cores used for the parallel computations). 

Rule 5. To execute new trials at the points  

𝑥𝑘+𝑗 =

{
 
 

 
 

𝑥𝑡𝑗 + 𝑥𝑡𝑗−1

2
, 𝑡𝑗 ∈ {1, 𝑘 + 1},

𝑥𝑡 + 𝑥𝑡𝑗−1

2
− sign(𝑧𝑡𝑗 − 𝑧𝑡𝑗−1)

1

2r
[
|𝑧𝑡𝑗 − 𝑧𝑡𝑗−1|

M
]

N

, 1 < 𝑡𝑗 < 𝑘 + 1.

 (15) 

4.3 Implementation of Parallel Algorithm of Global Optimization 

Let us consider a parallel implementation of the block multistage dimension reduction 

scheme described in Subsection 4.1. 

For the description of the parallelism in the multistage scheme, let us introduce a 

vector of parallelization degrees  

π = (π1, π2, … , πM), (16) 
where πi, 1 ≤ i ≤ M, is the number of the subproblems of the (i + 1)-th nesting level 

being solved in parallel, arising as a result of execution of the parallel iterations at the 

𝑖-th level. For the macro-variable ui , the number πi  means the number of parallel 

trials in the course of minimization of the function φM(u1, … , uM) = φ(y1, … , yN) 
with respect to ui at fixed values of u1, u2, … , ui−1, i.e. the number of the values of the 

objective function (y) computed in parallel. 

In the general case, the quantities πi, 1 ≤ i ≤ M can depend on various parameters 

and can vary in the course of optimization, but we will limit ourselves to the case 

when all components of the vector π are constant. 

Thus, a tree of MPI-processes is built in the course of solving the problem. At eve-

ry nesting level (every level of the tree) PMAGS is used. Let us remind that the paral-

lelization is implemented by selection not a single point for the next trial (as in the 

𝑅(1) =  2𝛥1 − 4
𝑧1
𝑀
;         𝑅(𝑘 + 1) =  2𝛥𝑘+1 − 4

𝑧𝑘
𝑀
; 

(13) 
𝑅(𝑖) =  𝛥𝑖 +

(𝑧𝑖 − 𝑧𝑖−1)
2

𝑀2𝛥𝑖
− 2

𝑧𝑖 + 𝑧𝑖−1
𝑀

, 1 < 𝑖 < 𝑘 + 1. 
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serial version) but p points, which are placed into p intervals with the highest charac-

teristics. Therefore, if p processors are available, p trials can be executed in these 

points in parallel. At that, the solving of the problem at the i-th level of the tree gener-

ates the subproblems for the (𝑖 + 1)-th level. This approach corresponds to such a 

method of organization of the parallel computations as a «master-slave» scheme. 

When launching the software, the user specifies: 

 A number of levels of subdivision of the initial problem (in other words, the num-

ber of levels in the tree of processes) M; 

 A number of variables (dimensions) at each level (∑ Nk
M
k=1 = N where N is the 

dimensionality of the problem); 

 A number of the MPI-processes and the distribution of these ones among the levels 

(π = (π1, π2, … , πM)). 

Let us consider an example: 

N = 10, M = 3, N1 = 3,  N2 = 4,  N3 = 3, π = (2, 3, 0) . 
Therefore, we have 9 MPI-processes, which are arranged into a tree (Fig. 2: at eve-

ry function φi varied parameters are shown only, the fixed values are not shown in the 

figure). According to N1, N2, N3  we have the following macro-variables: u1 =
(y1,  y2, y3), u2 = (y4,  y5, y6,  y7),  u3 = (y8,  y9, y10).  Each node solves a problem 

from relation (10). The root (level #0) solves the problem with respect to the first N1 

variables of the initial N-dimensional problem. The iteration generates a problem of 

the next level at any point. The nodes of level #1 solve the problems with respect to 

 N2 variables with the fixed values of the first N1 variables, etc. 

 

Fig. 2. Scheme of organization of parallel computations  

5 Numerical Results 

5.1 Test Problems Solving 

The computational experiments were conducted using the Lobachevsky supercomput-

er at the State University of Nizhny Novgorod (http://hpc-education.unn.ru/en/ 

𝜑1(𝑢1) 

𝜑3(𝑢3) 𝜑3(𝑢3) 
 

𝜑3(𝑢3) 

𝜑2(𝑢2) 

𝜑3(𝑢3) 𝜑3(𝑢3) 
 

𝜑3(𝑢3) 

𝜑2(𝑢2) 
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resources). The problems generated by the GKLS-generator [28] were selected for the 

test problems. 

The results of the numerical experiments with Globalizer on an Intel Xeon Phi are 

provided in Table 1. The computations were performed using the Simple and Hard 

function classes with the dimensions equal to 4 and 5. 

In the first series of experiments, serial computations using MAGS were executed. 

The average number of iterations performed by the method for solving a series of 

problems for each of these classes is shown in row I. The symbol “>” reflects the 

situation where not all problems of a given class were solved by a given method. It 

means that the algorithm was stopped once the maximum allowable number of itera-

tions Kmax was achieved. In this case, the Kmax value was used for calculating the av-

erage number of iterations corresponding to the lower estimate of this average value. 

The number of unsolved problems is specified in brackets. 

In the second series of experiments, parallel computations were executed on a 

CPU. The relative “speedup” in iterations achieved is shown in row II; the speedup of 

parallel computations was measured in relation to the serial computations (p = 1). 

The final series of experiments was executed using a Xeon Phi. The results of these 

computations are shown in row III; in this case, the speedup factor is calculated in 

relation to the PMAGS results on a CPU using eight cores (p = 8). 

Table 1. Average number of iterations 

  
p 

N = 4 N = 5 

  Simple Hard Simple Hard 

I 

Serial computations 

Average number 

of iterations 

1 11953 25263 15920 >148342(4) 

II Parallel computations 

on CPU 

Speedup 

2 2.51 2.26 1.19 1.36 

 4 5.04 4.23 3.06 2.86 

 8 8.58 8.79 4.22 6.56 

III Parallel computations 

on Xeon Phi 

Speedup 

60 8.13 7.32 9.87 6.55 

 120 16.33 15.82 15.15 17.31 

 240 33.07 27.79 38.80 59.31 

5.2 The Problem of Optimal Vibration Isolation for the Multi-degree-of-

freedom System 

Consider the vibration isolation problem for a multidegree-of-freedom system consist-

ing of a base and elastic body to be isolated modeled by two material points connect-

ed each other by elastic and damping elements [29]. This mechanical system is de-

scribed by the equations 

𝜉1̈ = −𝛽(𝜉1̇ − 𝜉2̇) − 𝜉1 + 𝜉2 + 𝑢 + 𝑣, 

(17) 𝜉2̈ = −𝛽(𝜉2̇ − 𝜉1̇) − 𝜉2 + 𝜉1 + 𝑣, 

ξ1(0) = ξ2(0) = 0,   ξ̇1(0) = ξ̇2(0) = 0. 
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where 𝜉1 and 𝜉2 are coordinates of the material points, 𝑣 is the base acceleration up to 

sign (the external excitation), 𝑢 is the control force, 𝛽 is a positive damping parame-

ter. Rewrite the equation (26) in the standard form 

This model can describe the typical situations of vibration isolation for devices, 

apparatuses and humans located on moving vehicles. 

Choose two criteria for this system to characterize the process of vibration isolation 

𝐽1(𝑢) = sup
𝑣ϵ𝐿2

sup𝑡≥0|𝑥1(𝑡)|

‖𝑣‖2
,   𝐽2(𝑢) = sup

𝑣ϵ𝐿2

sup𝑡≥0|𝑥2(𝑡) − 𝑥1(𝑡)|

‖𝑣‖2
. (19) 

The first criterion characterizes the maximal displacement of the body to be isolat-

ed with respect to the base, while the second one the maximal deformation of the 

elastic body. Consider two-objective control problem for state-feedback case. The 

Pareto optimal front computed by Globalizer is presented on Fig. 3. 

 

Fig. 3. Pareto optimal front for the vibration isolation problem 

𝑥1̇ = 𝑥3, 

(18) 
𝑥2̇ = 𝑥4, 
𝑥3̇ = −𝑥1 + 𝑥2 − 𝛽𝑥3 + 𝛽𝑥4 + 𝑣 + 𝑢, 
𝑥4̇ = 𝑥1 − 𝑥2 + 𝛽𝑥3 − 𝛽𝑥4 + 𝑣, 
𝑥1(0) = 𝑥2(0) = 𝑥3(0) = 𝑥4(0) = 0. 
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6 Conclusion 

In this paper, the Globalizer global optimization software system was presented for 

implementing a general scheme for the parallel solution of globally optimized deci-

sion making. The work is devoted to the investigation of the possibility to speedup the 

process of searching the global optimum when solving the multidimensional multiex-

tremal optimization problems using the approach based on the application of the par-

allel block multistage scheme of the dimension reduction. 

The architecture of Globalizer system has been considered. The usage of Globaliz-

er has been demonstrated by solving the applied problem of control theory. 
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