
An Approach for Parallel Solving the Multicriterial 

Optimization Problems with Non-convex Constraints 

Victor Gergel and Evgeny Kozinov 

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia 
gergel@unn.ru, evgeny.kozinov@itmm.unn.ru 

 

Abstract. In the present paper, an efficient method is proposed for parallel 

solving of the multicriterial optimization problems with non-convex constraints, 

where the optimality criteria could be the multiextremal ones and computing the 

values of the criteria and constraints could require a large amount of computa-

tions.  The developed approach is based on the reduction of the multicriterial 

problems to the nonlinear programming ones by means of the minimax convo-

lution of the partial criteria, on the dimensionality reduction with the use of 

Peano space-filling curves, and on the application of efficient information-

statistical global optimization methods with a novel index scheme of the con-

straints handling instead of the penalty functions applied usually. When per-

forming the parallel computations, the maximum utilization of the whole search 

information obtained in the course of the search process is provided. The results 

of the computational experiments have demonstrated such an approach to allow 

reducing the computational costs of solving the multicriterial optimization prob-

lems essentially – tens and hundred times. 

Keywords: Decision Making  Multicriterial Optimization  Global Optimiza-

tion with Non-Convex Constraints  High Performance Computations  Dimen-

sionality Reduction  Criteria Convolution  Global Search Algorithms  Com-

putational Complexity. 

1 Introduction  

The multicriterial optimization (MCO) problems are among the most general problem 

statements for the decision-making problems – the statement of MCO problems co-

vers many classes of optimization problems, including unconstrained optimization, 

nonlinear programming, global optimization, etc. The opportunity to specify several 

criteria is very useful in formulating the complex decision-making problems, and is 

used in the applications widely. The practical importance has caused a high research 

activity in the field of the MCO problems. As a result of intensive research, a plenty 

of efficient methods for solving the MCO problems have been proposed, and many 

practically important problems have been solved - see, for example, the monographs 

[1-3,19] and reviews of scientific and practical results [4,5,7,20,32,33]. 
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Among key features of the multicriterial optimization problems is a potential con-

tradiction between the partial efficiency criteria. This makes impossible to achieve the 

optimum (the best) values with respect to all partial criteria simultaneously. Conse-

quently, the finding of some compromised (effective, non-dominated) decisions, 

when the achieved values of particular partial criteria are consistent with each other is 

understood as a solution of a MCO problem usually. It is important to note that the 

viewpoint on an expedient compromise can be changed in the course of computations 

that could require finding several different compromised decisions. 

Among the developed approaches for solving the MCO problems, one can outline 

the methods of lexicographic optimization, when some arrangement of the criteria 

according to the importance of these ones is made, and the optimization of the partial 

criteria is performed successively according to the decreasing of their importance – 

see, for example, [3]. Another approach is represented by the iterative methods [4,17], 

when the researcher (the decision-maker) takes an active part in the process of select-

ing the decisions. One more direction developed extensively consists in the develop-

ment of the evolutionary algorithms based on the simulation of some natural phenom-

ena and the application of these ones to solving the MCO problems [17,18,22,23]. 

The scalarization, when some methods for the convolution of the partial criteria into a 

single criterion are applied, is an approach used widely – see, for example, [2,6]. 

The present work is devoted to the solving of the MCO problems, which are used 

for formulating the decision-making problems in the computer-aided design of the 

complex technical objects and systems. In these applications, the partial criteria can 

have a multiextremal form, and the domain of feasible decisions can be defined by 

non-convex constraints. The presence of constraints can result in a partial computabil-

ity, when the computations of some criteria and constraints are impossible if even one 

constraint is not satisfied. Also, it was supposed that the computations of the values of 

criteria and constraints could require a large amount of computations. In these condi-

tions, the finding of even one compromised decision requires a considerable amount 

of computations whereas the finding of several effective decisions (or of the complete 

set of these ones) becomes a problem of a huge computational complexity.  

The properties of the considered class of the MCO problems listed above deter-

mine the key feature of these ones – a high computational complexity. One of the 

promising directions of the search for the methods of solving such problems consists 

in the use of the model-based approach, when after a small number of computations 

of the values of the computation-costly criteria and constraints, the fast-computed 

approximation functions are constructed [25,26]. Such an approach is efficient 

enough, however, the construction of good approximations is difficult at the essential-

ly multiextremal behavior of the optimized criteria and constraints. 

The approach to solving the computational-costly class of the MCO problems pro-

posed in the present paper is based on the following key statements. First of all, the 

scalarization of the vector criterion is used that allows reducing the solving of a MCO 

problem to the solving of a series of global optimization problems [2,6]. Next, an 

efficient global search algorithm developed in the framework of the information-

statistical theory of the multiextremal optimization [9,10] is applied for solving the 

constrained global optimization (CGO) problems with the non-convex constraints. 
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The parallelization methods developed for this algorithm provide high indicators of 

efficiency of the parallel computations allowing full utilization of the great computa-

tional potential of modern supercomputer systems. Finally, the whole search infor-

mation obtained in the course of solving a MCO problem is utilized in full amount 

when performing all necessary computations. In general, the developed approach 

allows reducing the amount of computations performed for the searching of the next 

efficient decisions essentially – down to the execution of several iterations only.  

Further structure of the paper is as follows. In Section 2, the statement of a mul-

ticriterial optimization problem with non-convex constraints is given. In Section 3, the 

basics of the developed approach are presented. In Section 4, the global search algo-

rithm for solving the reduced scalar nonlinear programming problems is described. In 

Section 5, the issues of the parallel computations with the reuse of the search infor-

mation obtained in the course of computations are discussed. Section 6 presents the 

results of numerical experiments. In Conclusion, the obtained results are discussed 

and main directions of further investigations are outlined.  

2 Problem Statement 

A problem of multicriterial optimization with non-convex constraints can be stated in 

the following form: 

𝑓(𝑦) =  (𝑓1(𝑦), 𝑓2(𝑦), … , 𝑓𝑠(𝑦)) 𝑚𝑖𝑛,  𝑦 ∈ 𝑄, 

𝑄  =  { 𝑦 ∈ 𝐷 ∶ 𝑔𝑖(𝑦) ≤  0, 1 ≤ 𝑖 ≤ 𝑚 }, 

𝐷  =  { 𝑦 ∈ 𝑅𝑁: 𝑎𝑖 ≤  𝑦𝑖 ≤  𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑁 } 

(1) 

where 

─ 𝑦 =  (𝑦1, 𝑦2, … , 𝑦𝑁) is the vector of varied parameters, 

─ 𝑁 is the dimensionality of the multicriterial optimization problem being solved, 

─ 𝑓(𝑦)  =  (𝑓1(𝑦), 𝑓2(𝑦), … , 𝑓𝑠(𝑦)) is the vector criterion of efficiency, 

─ 𝑔(𝑦)  =  (𝑔1(𝑦), 𝑔2(𝑦), … , 𝑔𝑠(𝑦)) is the vector function of the constraints,  

─ 𝑄  is the domain of feasible solutions, 𝐷 is the search domain and a, bRN are giv-

en constant vectors. 

In further consideration, the following notations will be used also: 

𝑔𝑚+1(𝑦)  =  𝑓1(𝑦), 𝑔𝑚+2(𝑦)  =  𝑓2(𝑦), … , 𝑔𝑚+𝑠(𝑦)  =  𝑓𝑠(𝑦), 𝑀 =  𝑠 + 𝑚. 

Without any loss in generality, the partial criteria values in the problem (1) are 

supposed to be non-negative, and the decrease of these ones corresponds to increasing 

efficiency of the considered decisions 𝑦 ∈ 𝐷. 

Usually, the partial criteria of the MCO problem (1) contradict to each other, and 

there is no decision 𝑦 ∈ 𝐷, which would provide the optimal (minimal) values for all 

criteria simultaneously. In such cases, the decisions 𝑦∗ ∈ 𝐷, where the values of par-

ticular partial criteria cannot be improved without worsening the efficiency values 

with respect to other criteria, are considered as the solutions of the MCO problem. 

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

6



Such unimprovable decisions are called the effective or Pareto-optimal ones. Any 

effective decision can be considered as a partial solution, and the set of all unimprov-

able decisions represent a complete solution of the MCO problem. 

As it has been already mentioned above, in the present paper, the problem (1) will 

be considered in application to the most complex decision-making problems where 

the partial criteria 𝑓𝑖(𝑦), 1 ≤ 𝑖 ≤ 𝑠 could be multiextremal, the constraints could be 

non-convex, and obtaining the values of the criteria and constraints at the points of the 

search domain 𝑦 ∈ 𝐷 could require a large amount of computations. Let us suppose 

also the partial criteria 𝑓𝑖(𝑦), 1 ≤ 𝑖 ≤ 𝑠 and the constraints 𝑔𝑖(𝑦), 1 ≤ 𝑖 ≤ 𝑚 to satis-

fy the Lipschitz condition 

DyyyyLygyg iii  ,,)()( , 1 ≤ 𝑖 ≤ 𝑀,  (2) 

where 𝐿𝑖 are the Lipschitz constants for the functions 𝑔𝑖(𝑦), 1 ≤ 𝑖 ≤ 𝑀 and ‖∗‖ de-

notes the Euclidean norm in 𝑅𝑁.  

3 The Basics of the Approach 

3.1 The reduction of the MCO problems to the global optimization problems 

with the non-convex constraints  

The approach applied in the present work is based on the scalarization of the vector 

criterion by means of the minimax convolution scheme that allows reducing the solv-

ing of the problem (1) to solving a nonlinear programming problem 

min   ,],1),(max),([ QysiyfyF ii    

𝜆 ∈ Λ ⊂ 𝑅𝑠 ∶  ∑ 𝜆𝑖 = 1,𝑠
𝑖=1   𝜆𝑖 ≥ 0,  1 ≤ 𝑖 ≤s. 

(3) 

The necessity and sufficiency of this approach for solving the MCO problem is a 

key property of the minimax convolution scheme: the result of the minimization of 

𝐹(, 𝑦) leads to the obtaining of an effective decision1 for the MCO problem and, vise 

versa, any effective decision of the MCO problem can be obtained as a result of the 

minimization of 𝐹(, 𝑦) at the corresponding values of the convolution coefficients 

𝑖, 1 ≤ 𝑖 ≤ 𝑠 – see, for example, [4]. 

The coefficients 𝑖, 1 ≤ 𝑖 ≤ 𝑠 in (3) can be understood as the indicators of im-

portance of the partial criteria – the larger the value of the coefficient 𝑖 of a particu-

lar partial criterion, the more the contribution of this partial criterion in the scalar 

criterion 𝐹(, 𝑦). As a result, a method of solving the MCO problems can be formu-

lated in a step-by-step manner. At every step, the decision maker chooses the desired 

values of the coefficients 𝑖, 1 ≤ 𝑖 ≤ 𝑠. Then, the solving of the formed problem (3) 

is performed. Afterwards, the decision maker analyzes the obtained effective deci-

sions and corrects the chosen coefficients 𝑖, 1 ≤ 𝑖 ≤ 𝑠 if necessary. Such a multistep 

method corresponds to the practice of the choice of the compromised decision in the 

                                                           
1 More exactly, the minimization of 𝐹(, 𝑦) can lead to the obtaining of the weakly – effective 

decisions (the set of the weakly effective decisions includes the Pareto domain).  
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complex decision-making problems to much extent. And the possibility to determine 

several effective decisions (or the whole set of these ones) at reasonable computation-

al costs becomes a key problem in solving the complex multicriterial optimization 

problems. 

It is worth noting that the scalar criterion 𝐹(, 𝑦) satisfies the Lipschitz condition 

also: 

DyyyyLyFyF  ,,),(),(  .  (4) 

3.2 The dimensionality reduction for the multidimensional global 

optimization problems  

The use of the global search algorithms developed within the framework of the infor-

mation-statistical theory of global optimization [8-11] for solving the multiextremal 

optimization problems (3) is one more key statement of the approach developed in the 

present work. This theory has served as the basis for the development of a large num-

ber of optimization algorithms, which have been substantiated mathematically and 

have demonstrated a high efficiency, and have allowed solving many complex opti-

mization problems in various fields of application [11,28-31,34]. 

The reduction of the dimensionality of the problems being solved with the use of 

Peano space-filling curves or evolvents 𝑦(𝑥) mapping the interval [0,1] onto an 𝑁-

dimensional hypercube 𝐷 unambiguously is a distinctive feature of the information-

statistical global optimization algorithms – see, for example, [9-11]. As a result of 

such reduction, the initial multidimensional global optimization problem (3) is re-

duced to a one-dimensional problem: 

𝐹(, 𝑦(𝑥∗)) = 𝑚𝑖𝑛 𝐹(, 𝑦(𝑥)) 𝑔𝑖(𝑦(𝑥)) ≤ 0, 1 ≤ 𝑖 ≤ 𝑚, 𝑥 ∈ [0,1].  (5) 

It is important to note that the one-dimensional functions obtained as a result of the 

reduction satisfy the uniform Hölder condition (see [9,10]) i. e. 

|𝐹(𝜆, 𝑦(𝑥′))  − 𝐹(𝜆, 𝑦(𝑥′′))| ≤ 𝐻|𝑥′ − 𝑥′′|
1
𝑁, 𝑥′, 𝑥′′ ∈ [0,1], 

|𝑔𝑖(𝑦′) − 𝑔𝑖(𝑦′′)| ≤ 𝐻𝑖|𝑥
′ − 𝑥′′|, 𝑥′, 𝑥′′ ∈ [0,1], 1 ≤ 𝑖 ≤ 𝑚 

(6) 

where the Hölder constant 𝐻 (𝐻𝑖) is defined by the relation 𝐻 = 4𝐿√𝑁 (𝐻𝑖 =

4𝐿𝑖√𝑁), 1 ≤ 𝑖 ≤ 𝑚, 𝐿(𝐿𝑖) is the Lipschitz constant from (2) and (4) and 𝑁 is the 

dimensionality of the optimization problem (1). 

4 An Efficient Method for Solving the Global Optimization 

Problems with the Non-convex Constraints 

The basics of the approach presented in Section 3 allow reducing the solving of the 

MCO problem (1) to the solving of a series of the reduced multiextremal problems 
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with the constraints (5). And, thus, the global search algorithms can be applied for 

solving the MCO problems [8,12-16]. 

It is worth noting that the presence of the non-convex constraints complicates solv-

ing the global optimization problems considerably – the obtained solutions should 

belong to the feasible domain 𝑄. The situation becomes even more complicated in the 

case of the partial computability, when the computing of some criteria and constraints 

is impossible if there is even one unsatisfied constraint. Often, for solving the con-

strained optimization problems, more simple cases are selected – for example, the 

problems with the linear or quadratic constraints are considered. Various methods of 

approximation of the complex constraints using the constraints of simpler forms (line-

ar, convex, etc.) are applied as well. However, the most often applied method is the 

penalty function method. The approach used in the present work is based on a novel 

method of the constraint handling. This approach was developed within the frame-

work of the information-statistical theory of global search [10]. The idea of the ap-

proach consists in the construction of a scalar unconstrained objective function, the 

solving of which leads to the solving of the initial problem (5) – more detailed de-

scription of the approach is given below. 

Within the framework of this approach, the algorithm of constrained global search 

(ACGS) for the multiextremal optimization problems with the non-convex con-

straints2 makes the basis of the developed optimization methods. The general compu-

tational scheme of the algorithm can be represented in the following form [9,10]. 

Let us introduce a simpler notation for the one-dimensional problems (5) as 

𝑚𝑖𝑛{ (𝑥): 𝑔𝑖(𝑦(𝑥)) ≤  0, 1 ≤ 𝑖 ≤ 𝑚, 𝑥 ∈ [0,1]} , 

(𝑥)  = 𝑔𝑚+1(𝑥)  =  𝐹(, 𝑦(𝑥)). 
(7) 

The problem (7) can be considered in the partial computability form, when each 

function 𝑔𝑗, 1 ≤ 𝑗 ≤ 𝑚 + 1 is defined and computable in the corresponding subdo-

main 𝑗[0,1] only, where 

1[0,1],𝑗+1 = { 𝑥 ∈ 𝑗 𝑔𝑗(𝑦(𝑥)) ≤ 0 }, 1 ≤ 𝑗 ≤ 𝑚. 
(8) 

Taking into account the condition (8), the initial problem (7) can be represented as 

follows 

(𝑥∗)𝑚𝑖𝑛{𝑔𝑚+1(𝑦(𝑥)) ∶  𝑥 ∈ 𝑚+1}. (9) 

This form of the problem (7) allows defining an index    ( x )  for the points x  

from the search domain [0,1] where  − 1 is the number of constraints, which are 

satisfied at this point. The index  is defined by the conditions  

𝑔(𝑦(𝑥)) > 0, 𝑔𝑗(𝑦(𝑥)) ≤ 0,  1 ≤ 𝑗 ≤  − 1, 1 ≤  =  (𝑥) ≤ 𝑚 + 1. (10) 

where the last inequality is insufficient if  = 𝑚 + 1.  Computing the index  can be 

provided by the sequential computation of the values 𝑔𝑗(𝑦(𝑥)),  1 ≤ 𝑗 ≤  =  (𝑥),  

i. e. the next value 𝑔𝑗+1(𝑥) is computed in the case, when 𝑔𝑗(𝑥) ≤ 0 only. The pro-

                                                           
2 This algorithm is known also as the index method - see [10]. 
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cess of computations is terminated either as a result of the fulfillment of the inequality 

𝑔𝑗(𝑥) > 0 or as a result of the achievement of the value  (𝑥) = 𝑚 + 1 (this proce-

dure is called hereafter a trial). 

The main idea of such index scheme consists in the reduction of the constrained 

problem (7) to an unconstrained problem 

(𝑥∗)  𝑚𝑖𝑛{(𝑥): 𝑥 ∈ [0,1]}, 
(11) 

where 
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It is worth noting that the values of the Lipschitz constants 𝐿, 1 ≤  ≤ m + 1  and 

the value 𝑔𝑚+1
∗  are unknown. However, when performing the computations, one can 

use the adaptive estimates of these values obtained in the course of solving the opti-

mization problem (see the description of the algorithm below) instead. 

The general computational scheme of the ACGS method consists in the following.  

The first trial is performed at an arbitrary point 𝑥1 ∈ (0, 1). The choice of the point 

𝑥𝑘+, 𝑘 ≥ 1 of any next trial is determined by the following rules. 

Rule 1. Renumber the points of preceding trials 𝑥1, … , 𝑥𝑘 by the lower indices in 

the order of increasing of the coordinate values i. e. 

0 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑖 < ⋯ < 𝑥𝑘 < 𝑥𝑘+1 = 1,  
(12) 

and juxtapose these ones to the values 𝑧𝑖 = 𝑔(𝑥𝑖),  =  (𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑘 from (10) 

computed at these points. The points 𝑥0 = 0 and 𝑥𝑘+1 = 1 are introduced additionally 

for convenience of further notations (the values 𝑧0 and 𝑧𝑘+1 are undefined). 

Rule 2. Subdivide the indices 𝑖, 1 ≤ 𝑖 ≤ 𝑘 of the points from (12) with respect to 

the number of constraints of the problem fulfilled at these points by constructing the 

sets  

𝐼 = {𝑖: 1 ≤ 𝑖 ≤ 𝑘,  =  (𝑥𝑖)},  1 ≤  ≤ 𝑚 + 1 (13) 

containing the indices of all points 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑘 having the indices equal to the same 

value  . The boundary points 𝑥0 = 0 and 𝑥𝑘+1 = 1 are interpreted as the ones having 

the zero indices, and are juxtaposed to an auxiliary set 𝐼0 = {0, 𝑘 + 1}.  

Determine the maximum value of the index  

𝑀 = 𝑚𝑎𝑥 { =  (𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑘}. 
(14) 

Rule 3. Compute the current estimates 

𝜇 = max {|𝑧𝑖 − 𝑧𝑗|  √(𝑥𝑖 − 𝑥𝑗)
𝑁

⁄ , 𝑖, 𝑗 ∈ 𝐼𝜈, 𝑖 > 𝑗} (15) 

for the Hölder constants 𝐻 of the functions 𝑔, 1 ≤  ≤ 𝑚 + 1 from (6). If the set 𝐼 

contains less than two elements or if 

 from (15) appears to equal zero, then accept 




= 1.  
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Rule 4. Compute the estimates 𝑧𝜈
∗, 1 ≤  ≤ 𝑀 for all nonempty sets 𝐼,  

1 ≤  ≤ 𝑚 + 1 from (13),  
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Rule 5. Compute the characteristics 𝑅(𝑖) for each interval (𝑥𝑖−1, 𝑥𝑖),  
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(17) 

11,)( 1   kjxxN
iij .  

where 𝑧𝜈
∗, 1 ≤  ≤ 𝑀 from (16), M from (14). 

The values 𝑟 > 1, 1 ≤  ≤ 𝑚 + 1 are the parameters of the algorithm. The ap-

propriate values 𝑟 allows using the products 𝑟 as the estimates of the Hölder con-

stants 𝐻, 1 ≤  ≤ 𝑚 + 1. 

Rule 6. Determine the interval (𝑥𝑡−, 𝑥𝑡) with the maximum characteristic: 

𝑅(𝑡) = 𝑚𝑎𝑥 {𝑅(𝑖): 1 ≤ 𝑖 ≤ 𝑘 + 1}.  
(18) 

Rule 7. Execute the next trial at the point of the interval 𝑥𝑘+1 ∈ (𝑥𝑡−1, 𝑥𝑡) deter-

mined according to the expression  
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(19) 

The iterations of the algorithm are terminated if the stopping condition is satisfied  


𝑡

≤ ,  
(20) 

where t  is from (18), and   0  is the predefined accuracy. 

Various modifications of this algorithm and the corresponding theory of conver-

gence are presented in [9,10]. 

5 Parallel Computations for the Time-consuming Multicriterial  

Constrained Optimization Problems  

The proposed approach for parallel computations when solving the computation-

costly multicriterial optimization problems is based on the simultaneous computing of 
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the values of partial criteria and constraints of the initial problem (1) at several differ-

ent points of the search domain 𝐷. Such an approach provides the parallelization of 

the most time-consuming part of the global search, and is a general one – it can be 

applied for many global search methods for various global optimization problems. 

Besides, an essential speedup of the computations can be provided by means of full 

utilization of the whole search information obtained in the course of optimization. 

5.1 The reuse of the search information for accelerating the computations  

The numerical solving of the optimization problems consists in the sequential compu-

tation of the values of the partial criteria 𝑓𝑖 = 𝑓(𝑦𝑖) and constraints 𝑔𝑖 = 𝑔(𝑦𝑖) at the 

points 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑘 of the search domain 𝐷. The search information obtained can be 

represented in the form of the search information set (SIS): 

Ω𝑘 = {(𝑦𝑖 , 𝑓𝑖 , 𝑔𝑖)𝑇: 1 ≤ 𝑖 ≤ 𝑘}. 
(21) 

The availability of SIS allows reducing the results of previous computations to the 

values of any next optimization problem (11) being solved without any time-

consuming computations of the values of partial criteria and constraints of the initial 

problem (1) at any new values of the convolution coefficients 𝜆 ∈ Λ. 

And, thus, all search information can be utilized for continuing the computations in 

full amount. In general, the reuse of the search information will require less and less 

amount of computations for solving every next optimization problem downto per-

forming several iterations only to find the next effective decision (see Section 6 for 

the results of the numerical experiments). 

As a result of the dimensionality reduction, the search information Ω𝑘 from (21) 

can be transformed into the matrix of search state (MSS)  

𝐴𝑘 = {(𝑥𝑖 , 𝑧𝑖 , 𝑖, 𝑙𝑖)
𝑇: 1 ≤ 𝑖 ≤ 𝑘}, 

(22) 

where 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑘 are the reduced trial points of the executed global search itera-

tions, 𝑧𝑖, 1 ≤ 𝑖 ≤ 𝑘 are the values of scalar criterion of current reduced optimization 

problem (11) being solved, 𝑖, 1 ≤ 𝑖 ≤ 𝑘 are the indices of the scalar criterion values, 

and 𝑙𝑖, 1 ≤ 𝑖 ≤ 𝑘 are the indices of the global search iterations, where the points 𝑥𝑖, 

1 ≤ 𝑖 ≤ 𝑘 have been computed. 

The ACGS algorithm improved by the possibility to use the search information 𝐴𝑘 

from (22) will be called hereafter the Algorithm of Multicriterial Constrained Global 

Search (AMCGS). 

5.2 Parallel algorithm of the multicriterial global search  

The choice of the points in the search domain 𝐷 for the simultaneous execution of 

several trials (computing the values of the criteria and constraints of initial MCO 

problem (1)) can be provided by means of the following parallel generalization of the 

ACGS method – see, for example, [10,34].  

Let p be the number of employed parallel computing nodes (processors or cores) of 

the computational system with shared memory. The rules of the parallel algorithm 
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correspond to the computational scheme of the ACGS method except the steps of 

computing the points of the next global search iteration. The modified rules for the 

parallel algorithm can be presented as follows.  

Rule  6 (updated). Arrange the characteristics of the intervals (𝑥𝑖−1, 𝑥𝑖),  
1 ≤ 𝑖 ≤ 𝑘 + 1 obtained in (17) in the decreasing order 

)()()()( 121 kk tRtRtRtR    (23) 

and select 𝑝 intervals with the indices 𝑡𝑗, 1 ≤ 𝑗 ≤ 𝑝 having the maximum values of 

the characteristics. 

Rule 7 (updated). Perform new trials at the points 𝑥𝑘+𝑗,1 ≤ 𝑗 ≤ 𝑝 placed into the 

intervals with the maximum characteristics from (23) according the expression (19). 

The stopping condition (20) of the parallel algorithm, which terminates the trials, 

should be checked for all intervals, where the scheduled trials are performed, i. e. 

pt j   1,  
jt  .  

The ACGS algorithm updated by the opportunity of the parallel computations for 

the computing nodes with shared memory will be named hereafter the Parallel Algo-

rithm of Multicriterial Constrained Global Search (PAMCGS). 

6 Results of Numerical Experiments  

The numerical experiments have been carried out using the Lobachevsky supercom-

puter at State University of Nizhni Novgorod (the operating system – CentOS 6.4, the 

supercomputer management system – SLURM). Each supercomputer node had 2 Intel 

Sandy Bridge E5-2660 2.2 GHz, 64 Gb RAM processors. The central processor units 

(CPUs) had 8 cores (i.e., total 16 CPU cores were available per a node).  

First, let us consider the results of the comparison of the developed PAMCGS al-

gorithm with several other multicriterial optimization algorithms. A bi-criterial test 

problem proposed in [21]: 

𝑓1(𝑦) = (𝑦1 − 1)𝑦2
2 + 1, 𝑓2(𝑦) = 𝑦2, 0 ≤ 𝑦1, 𝑦2 ≤ 1. (24) 

was used for this experiment. The construction of a numerical approximation of Pare-

to domain was understood as the solution of the problem (24). To evaluate the quality 

of approximation, the completeness and uniformity of coverage of the Pareto domain 

were evaluated with the use of the following two indices [21,24]: 

• The hypervolume index (HV). This index features the completeness of approxima-

tion of the Pareto domain (a larger value corresponds to a denser coverage of the 

Pareto domain). 

• The distribution uniformity index (DU). This index features the uniformity of cov-

erage of the Pareto domain (a lower value corresponds to more uniform coverage 

of the Pareto domain). 
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Within the framework of this experiment, five multicriterial optimization algo-

rithms were compared: the Monte-Carlo (MC) method, the genetic algorithm SEMO 

from the PISA library [20,24], the Non-Uniform Coverage (NUC) method [21], the 

Bi-objective Lipschitz Optimization (BLO) method proposed in [24], and the serial 

variant of the PAMCGS algorithm proposed in the present paper. The results of solv-

ing the problem (24) for all methods listed above were obtained in [24]. 

For the AGСS method, 50 problems (3) have been solved at various values of the 

convolution coefficients 𝜆 distributed in Λ uniformly. The results of performed exper-

iments are presented in Table 1. 

Table 1. Comparison of the efficiency of the multicriterial optimization algorithms 

Method MC SEMO NUC BLO ACGS 

Iterations 500 500 515 498 370 

Number of points 

in the Pareto domain 

approximation 

67 104 29 68 100 

HV index 0.300 0.312 0.306 0.308 0.316 

DU index 1.277 1.116 0.210 0.175 0.101 

The results of the performed experiments have demonstrated that the ACGS algo-

rithm have a considerable advantage as compared to the considered multicriteria op-

timization methods even when solving the relatively simple MCO problems. 

Fig. 1. Contour plots of two criteria obtained with the use of the GKLS generator  

(a, b); the problem to be solved obtained by the convolution of the criteria  

𝜆 = {0.5,0.5} (c). The feasible domain is highlighted by green 

In the second series of the numerical experiments, the solving of the bi-criterial 

two-dimensional MCO problems with two constraints i. e. N=2, s=2, m=2 has been 

performed. The multiextremal functions obtained with the use of the GKLS generator 

[27] were used as the problem criteria. In the course of experiments, the solving of 

100 multicriterial problems of this class has been performed. In every problem, the 

search of the Pareto-optimal decisions for 50 convolution coefficients 𝜆 from (3) dis-

tributed in Λ uniformly has been performed. The obtained results were averaged over 

the number of solved MCO problems. In Figure 1 an example of two criteria as well 

as the result of convolution of the criteria and the feasible domain are presented. 

The numerical experiments have been performed with stopping upon achievement 

the method accuracy. For the checking, the points of the solution found by the method 

(a) (b) (c) 
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have been compared to the points of the Pareto domain approximation computed tak-

ing into account the selected convolution coefficients 𝜆. The accuracy of method 𝜀 =
0.02 and the reliability parameter 𝑟 = 5.6 were used when solving the series of prob-

lems. The results of the numerical experiments are presented in Table 2.  

Table 2. The results of the series of experiments on solving the two-dimensional bi-criterial  

constrained MCO problems 

Number 

of compu-

ting cores 

Search information 

S1 S2 
not used Used 

Number of  

iterations 

Problems 

solved 

Number of 

iterations 

Problems 

solved 

1 26191.8 88% 1420.5 93% 18.4 18.4 

2 12146.1 85% 653.3 90% 18.6 40.1 

5 5019.3 85% 285.7 91% 17.6 91.7 

10 2141.5 85% 152.5 93% 14.0 171.8 

25 1022.4 88% 88.6 94% 11.5 295.6 

In the first column of Table 2, the number of computing cores employed for solv-

ing the problems from the considered series of experiments is given. In the second 

and fourth columns, the averaged number of iterations executed by the PAMCGS 

algorithm for the solving of the optimization problem are presented. The third and 

fifth columns contain the percentage of the solved problems at given parameters of 

the method. The last two columns contain the information on the obtained speedup. 

The column (S1) shows the effect of the reuse of the accumulated search information. 

The column (S2) contains the information on the total speedup achieved as compared 

to the initial algorithm without the use of the search information.  

Table 3. The results of the series of experiments on solving the four-dimensional three-criterial 

constrained MCO problems  

Number 

of compu-

ting cores 

Search information 

S1 S2 
not used Used 

Number of 

iterations 

Problems 

solved 

Number of 

iterations 

Problems 

solved 

1 49 988 246.5 91% 6 153 261.0 90% 8.1 8.1 

2 20 369 550.2 90% 2 400 575.1 89% 8.5 20.8 

5 8 228 684.5 90% 709 672.4 92% 11.6 70.4 

10 5 582 125.8 92% 702 522.4 91% 7.9 71.2 

25 1 704 359.8 91% 204 342.8 90% 8.3 244.6 

The obtained results of experiments (Table 2) demonstrate that the reuse of the 

search information to allow reducing the total amount of computations by the factor 
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of 18.4 without employing any additional computational resources. When using 25 

computer cores, the maximun speedup reaches 295.6 times. 

In the third series of the numerical experiments, the solving of the three-criterial 

four-dimensional MCO problems with five constraints (i. e. N=4, s=3, m=5) has been 

performed. The criteria and constraints of the MCO problems to be solved were gen-

erated with the use of the GKLS generator [27] as in the previous experiment. When 

solving the problem series, the accuracy of the method 𝜀 = 0.01 and the reliability 

parameter 𝑟 = 5.6 were used. The results of the numerical are presented in Table 3. 

As it can be noted, for example, the speedup achieved when using 25 computing cores 

was 244.6 times.  

7 Conclusion  

In the present paper, an efficient parallel method is proposed for solving complex 

multicriterial optimization problems with non-convex constraints, where the criteria 

of optimality could be the multiextremal ones, and the computing of the criteria val-

ues could require a large amount of computations. The proposed approach is based on 

the reduction of the multicriterial problems to the nonlinear programming ones by 

means of the minimax convolution of the partial criteria, on the dimensionality reduc-

tion with the use Peano space-filling curves, and of application of the efficient infor-

mation-statistical global optimization methods with a novel index scheme of the con-

straints handling instead of the penalty functions applied usually. 

The key aspect of the developed approach is the overcoming of a large computa-

tional complexity of the global search of the set of effective decisions when solving 

the multicriterial optimization problems. A considerable increase in the efficiency and 

an essential reduction of the amount of computations was provided by means of the 

maximum possible use of the search information obtained in the course of computa-

tions. To do so, it was necessary to provide the possibilities of storing large amounts 

of the search information, of its efficient processing, and of using the search data in 

the course of solving the multicriterial optimization problems. Within the framework 

of the developed approach, the methods for converting all available search infor-

mation to the values of current scalar problem of nonlinear programming being solved 

have been proposed. The search information transformed to current optimization 

problem was used by the applied optimization methods for the adaptive planning of 

the global search iterations performed. The availability of the search information al-

lows also executing the parallel computation efficiently providing the choice of the 

most promising points of the search domain when searching the effective decisions 

for the MCO problems. 

The results of the numerical experiments have demonstrated the developed ap-

proach to allow reducing the computational costs of solving the multicriterial optimi-

zation problems with the non-convex constraints essentially – tens and hundreds 

times. 

As a conclusion, one can note that the developed approach is a promising one and 

needs continuing the investigations further. First of all, it is necessary to continue 
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carrying out the numerical experiments on solving the multicriterial optimization 

problems with larger number of partial criteria and constraints for lager dimensionali-

ties of the optimization problems to be solved. Also, a possibility of parallel computa-

tions for the high-performance systems with distributed memory should be explored. 
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