
Parallel Numerical Methods Course

for Future Scientists and Engineers

Iosif Meyerov, Sergey Bastrakov, Konstantin Barkalov, Alexander Sysoyev,

Victor Gergel

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia

iosif.meyerov@itmm.unn.ru

sergey.bastrakov@itmm.unn.ru

konstantin.barkalov@itmm.unn.ru

alexander.sysoyev@itmm.unn.ru

victor.gergel@itmm.unn.ru

Abstract. The rise of computational science has facilitated rapid progress in

many areas of science and technology over the last decade. There is a growing

demand in computational scientists and engineers capable of efficient collabora-

tion in interdisciplinary groups. Training such specialists includes courses on

numerical analysis and parallel computing. In this paper we present a new Mas-

ter’s course Parallel Numerical Methods which bridges the gap between theo-

retical aspects of numerical methods and issues of implementation for modern

multicore and manycore systems. The course aims to guide students through the

complete process of solving computational problems, from a problem statement

to developing parallel software and analyzing results of computational experi-

ments. An important feature is that many of practical classes are based on re-

search done at the HPC Center of the University of Nizhni Novgorod and there-

fore illustrate issues, which students may encounter in their research and future

career.

Keywords: Education in Computational Science · Numerical Analysis · Paral-

lel Computing · Master’s Program.

1 Introduction

The importance and relevance of modern methods of computational science can hard-

ly be overestimated. The progress in development of computer systems and applica-

tions for solving scientific and technical problems confronts more and more new am-

bitious challenges to scientists and engineers. In many fields there is a demand for

non-ordinary solutions which allow replacing natural experiments with computational

ones, therefore essentially shortening the way from an innovative idea to its techno-

logical implementation. Among such fields are computer-aided design, computational

physics, computational biomedicine and others. These areas can greatly benefit from

collaboration of experts in different areas: researchers in natural and social sciences,

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

839

mailto:iosif.meyerov@itmm.unn.ru
mailto:konstantin.barkalov@itmm.unn.ru

theoretical and applied, mathematicians, and software engineers. However, efficient

collaboration in such multidisciplinary groups is not always easy, as different profes-

sional communities tend to have specific traditions, methods and terminology.

A way to approach this issue is to train specialists oriented towards multidisciplinary

collaboration as a part of Master’s programs. The institute of IT, mathematics and

mechanics at the Lobachevsky State University of Nizhni Novgorod (UNN) has cre-

ated a Master’s program in computational science, which includes a wide range of

topics concerning numerical simulation, applied mathematics, computational mathe-

matics, and computer science. Many students on this program are members of multi-

disciplinary groups carrying out research projects at the UNN HPC center [1]. By the

time of graduation these students have some real-world experience in computational

science, which can be valuable for their career.

This paper describes a core course in our Master’s program in computational sci-

ence, Parallel Numerical Methods. To date, a considerable amount of educational and

methodical literature on numerical methods is available, for example, the latest edi-

tions of the classical textbooks [2–4]. In the literature on numerical methods, the is-

sues of development, application and theoretical substantiation of algorithms for nu-

merical solution of various classes of mathematical problems are considered. Courses

on theoretical aspects of numerical methods have been developed for decades with

lots of excellent courses and materials available. Parallel programming, performance

analysis and optimization are much more rapidly developing areas. Evolution of

hardware, tools and technologies constantly creates new challenges and requires de-

velopment and modernization of course materials. There are respectable textbooks on

key technologies for parallel programming, for example, [5, 6]. Some books consider

optimization of applications from various areas for modern architectures [7–9]. Our

Parallel Numerical Methods course aims to guide students through the complete pro-

cess of solving computational problems, from a problem statement to developing

parallel software and analyzing results of computational experiments. The course

forms skills in studying a problem at hand and its mathematical model, choosing ap-

propriate numerical methods, developing a parallel algorithm and its implementation

for multicore and manycore systems, performing computational experiments and

analyzing results in terms of accuracy and performance. An important feature of the

course is that most problems considered are based on the experience from research

projects done at the UNN HPC Center. These examples illustrate the common issues,

which students are likely to encounter in their future career.

This paper is organized as follows. Section 2 contains a short overview of courses

on numerical analysis and numerical methods. Section 3 presents the main ideas and

principles of our Parallel Numerical Methods course. Course structure is described in

section 4 with examples of lectures and practical classes given in section 5. Section 6

is devoted to assessment of student performance. Section 7 concludes the paper.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

840

3

2 Related Work

Courses on numerical analysis and numerical methods, for example [10–14] are de-

livered in many universities worldwide. The textbooks with several editions released,

including [15, 16], form a methodical basis for such courses. In general, these are

mostly classical courses on numerical methods with the main focus on theoretical

material: theorems on approximation, stability and convergence.

There are also courses which cover the classical topics of numerical methods and

are directed particularly towards the issues of implementation for modern computa-

tional systems. A notable example is the Introduction to Numerical Methods course at

MIT [10]. The course begins with considering the issues of performance, software

optimization, and floating-point arithmetic. Then, the basic numerical algorithms of

linear algebra (solving the eigenvalue problem, direct and iterative methods for solv-

ing systems of linear equations) are considered. There are several advanced courses

concerning parallel aspects of numerical algorithms, most notably in linear algebra

[17, 18]. Linear algebra problems are rather intuitive, and, therefore, very suitable to

demonstrate the basics of parallel computing. Other numerical methods are typically

part of courses on scientific computing, for example [19, 21].

This paper presents the Parallel Numerical Methods course developed at the UNN

HPC Center based on 15 years’ experience of research in computational science. The

course covers numerical methods and issues of parallel implementation for a wide

range of problems: dense and sparse linear algebra, direct and iterative solvers, finite-

difference schemes for ordinary and partial differential equations, Monte Carlo meth-

ods.

3 Course Description

The Parallel Numerical Methods course described in this paper is a core course of the

Master’s program in computational science at the Lobachevsky State University of

Nizhni Novgorod. The goals of the course are mastery of numerical algorithms and

considering the issues of implementation, performance and scalability on modern

hardware. The course covers parallel aspects of the classical topics of numerical

methods, including dense and sparse linear algebra, ordinary and partial differential

equations, Monte Carlo methods.

Course prerequisites include fundamentals of linear algebra, mathematical analysis,

numerical methods, and parallel programming. This set of skills is rather typical for

graduates of Bachelor’s programs in applied mathematics and computer science, such

as [22]. Since some students with a solid mathematical background may not be famil-

iar with parallel programming, for example, Bachelor’s in mathematics, our curricu-

lum offers an optional parallel programming course in the same semester, which

completely covers demands of the Parallel Numerical Methods course.

The course is based on the following main principles:

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

841

1. A wide range of topics: the course covers basic topics of numerical methods, wide-

ly used for scientific and engineering computing in various areas.

2. Balance between numerical analysis and computer science: the course combines

mathematically strict presentation of material with proper attention to efficient im-

plementation for parallel hardware.

3. Integrity: the course demonstrates the whole chain of stages required to solve a

computational problem (problem statement, mathematical model, serial algorithm,

parallel algorithms, implementation and parallelization, computational experiment

and analysis).

4. Real-world experience: demonstrating approaches used by research groups to solve

state-of-the-art problems of computational science.

5. Assessment based on applications: assessment of student performance is done

based mostly on ability to solve a problem going through all stages, from problem

statement to computational experiment and analysis.

6. Flexibility: the course is designed in such a way that modules / practical classes are

to a large degree independent.

Based on the above mentioned principles and course prerequisite we have decided

to give basic mathematical statements and theorems in the lectures without proofs,

making references to textbooks on numerical methods. Most lectures combine theo-

retical descriptions of methods with approaches to parallel implementation and

demonstrations of performance results. Each practical class is a detailed study and

development of a parallel implementation for a computational problem, using tools

part of Intel Parallel Studio (C++ Compiler, Cilk Plus, TBB, MKL, Amplifier). The

course contains a large number of case studies demonstrating applications from com-

putational physics, computational finance, computational biology, and other areas.

4 Course Outline

Below we give a list of basic modules of the course with brief descriptions.

1. Elements of computer arithmetic. The topic of this module is representation of

floating point numbers in computer memory [23]. The problems of computational

error accumulation and methods for its reduction and control are discussed. Typical

examples, where error accumulation may result in incorrect computation results,

are presented.

2. Direct methods for solving systems of linear equations. This module is devoted to

direct methods of solving systems of linear algebraic equations: Gaussian elimina-

tion, Cholesky decomposition, Thomas and reduction methods. The classical

methods are presented and estimates of complexity given. We demonstrate insuffi-

cient efficiency of naïve implementations of these methods on modern computa-

tional architectures. The idea of block data processing is highlighted consistently.

The problems of sparse algebra are considered here as well. A brief review of the

data structures for storing sparse matrices is given, typical problems arising when

performing the basic operations with sparse matrices are considered. Comparison

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

842

5

of the matrix-vector and matrix-matrix multiplication algorithms for the cases of

dense and sparse matrices is given. Cholesky decomposition is considered as an

example of a more complex computational algorithm for sparse matrices. The issue

of increasing amount of nonzero elements after factorization is demonstrated, sev-

eral algorithms of matrix reordering to reduce the fill-in of the resulting matrix

(minimum degree and nested dissection methods) are presented.

3. Iterative methods for solving systems of linear equations. This module considers

iterative methods for solving the systems of linear equations, from the basic meth-

ods (simple iteration, Jacobi, Seidel, upper relaxation methods) to Krylov-type

methods (generalized minimal residual, conjugated and biconjugated gradient

methods). We discuss approaches to parallelization, give theoretical and experi-

mental estimates of speed-up. The module also covers some methods of precondi-

tioning: the basic methods (Jacobi method, Gauss-Seidel method) and the methods

based on the incomplete LU-decomposition (ILU(0) and ILU(p) factorization).

4. Methods for solving ordinary differential equations. This module concerns the

basic methods for solving ODEs: Runge-Kutta methods and Adams methods. The

parallel variants of the methods for solving systems of ODEs are considered. For

Runge-Kutta methods, the pipelining scheme of solving systems of ODEs with a

sparse right-hand part is given. Solving a system of ODEs arising from simulating

a neural system is considered as an illustrative example.

5. Methods for solving differential equations in partial derivatives. The module en-

compasses the issues of parallel solving differential equations in partial derivatives.

Typical equations in partial derivatives (of hyperbolic, parabolic, and elliptical

types) are considered. The finite differences method is delivered to the students as

a method of reduction of differential equations to algebraic ones, leading to solving

the difference equations. The explicit and implicit schemes of solving parabolic

and hyperbolic equations and issues of parallel implementation are considered. The

advantages and drawbacks of each approach are discussed. The pentadiagonal sys-

tem of linear equations arising while solving 2D Poisson equation is discussed sep-

arately. The wave scheme of data processing in parallel solving of this system by

iterative methods is presented.

6. Monte Carlo methods. This module introduces general concepts of the Monte Car-

lo methods. It describes issues of utilizing pseudo-random number generators in

parallel programs, ways of reducing variance and presents applications for multi-

dimensional integration, computational physics, and computational finance.

5 Conducting the Classes

The lecture part of the course concerns construction and analysis of efficient parallel

algorithms from various topics of numerical methods. The presentation is accompa-

nied by the results of the computational experiments and analysis. For example, a

lecture on Cholesky factorization of a dense matrix is organized as follows. We start

with the definition of Cholesky factorization and describe applications for solving

systems of linear equations with a symmetric positive-definite matrix. Then we show

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

843

how a naive algorithm can be constructed based on the definition and estimate its

complexity. Approaches to parallelization are considered and scaling efficiency ob-

tained for our implementation is demonstrated. We proceed to estimating cache effi-

ciency of the naive algorithm and introducing the idea of blocking to increase cache

reuse. Serial and parallel block Cholesky factorization algorithms are presented along

with performance and scaling efficiency of our implementation compared to the naive

algorithm. Analysis of the results concludes the lecture.

Another section of the course covers sparse linear algebra algorithms. One of the

lectures considers sparse direct solvers. We discuss advantages and disadvantages of

direct methods, give a general computational scheme, review main approaches to

parallelization of sparse matrix factorization, and introduce widely used software. The

demonstration is done using the open source sparse matrix reordering library

PMORSy [24] developed at the UNN HPC Center. The example of workload distribu-

tion during a sparse matrix reordering is shown below (Fig. 1).

Fig. 1. Task mapping for a test matrix on 16 threads. Logical tasks are nodes of the graph,

dependencies between them are edges. Descendant nodes correspond to the tasks generated

after the parent task is completed. Same colored nodes are processed by the same thread [24].

Each practical class is a study of a selected computational problem. A problem de-

scription includes a problem statement, brief information on the research area, numer-

ical method, possible approaches of parallelization, analysis of correctness, perfor-

mance and scaling efficiency, and possible ways to improve it. The class is conducted

either in form of a demonstration and analysis done by a teacher or in form of stu-

dents gradually developing and analyzing their implementation following the descrip-

tion.

Let us describe several practical classes, which are part of the course. One group of

classes is based on research done by a group of mathematicians and computer scien-

tists on computational finance. A feature of this area is that problems are often seem-

ingly simple; however the models and methods used are rather complicated and rely

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

844

7

on statistics, differential equations and mathematical optimization. Nevertheless, all

formalisms used have a clear financial interpretation, which makes it easier to intro-

duce financial terms while keeping the material mathematically strict. Some of the

methods used in computational finance can also be applied for other areas. Below we

describe two concrete examples of this group.

The first example is performance optimization of Black-Scholes pricing. The prob-

lem is to calculate the fair prices for a set of European options [25], which is a fairly

simple problem of financial mathematics. In this case, the result can be calculated

analytically. From the programming point of view, this is a trivial problem (just to

apply a formula for input data); however, it demonstrates that the computational time

can vary by an order of magnitude even in such a simple program depending on pro-

gramming and optimization skills and techniques. First, we introduce a model and

basic concepts of a financial market and some intuitive descriptions of the option

pricing problem briefly. We create a basic implementation, analyze its performance

and improve it in a step-by-step fashion: eliminate unnecessary type casts, carry out

invariants, perform mathematical transforms that replace heavy math routines with the

lighter ones, vectorize and parallelize, perform warm-up to reduce overhead on thread

creation, try reducing precision of floating-point operations, utilize streaming stores.

The effects of these optimization techniques are demonstrated on both CPU and Intel

Xeon Phi. The main methodological direction of this work is to teach pragmatics of

using mathematical routines (choosing efficient mathematical library, controlled re-

duction of precision if justified), vectorization by compiler directives and optimiza-

tion for manycore architectures. The detailed description of this work is published in

[25].

The second example on computational finance is performance optimization of

Monte Carlo option pricing (Fig. 2). We consider the case where the fair prices can-

not be computed analytically. A widely used method is Monte Carlo simulation,

which is relatively easy to implement and has a huge degree of parallelism. We cover

topics of correct pseudo-random number generation in parallel applications and

demonstrate typical errors in this area. Efficiency of low-discrepancy sequences and

approaches to parallel implementation are shown. We demonstrate methods to check

accuracy of a Monte Carlo simulation. The main value for students is to learn how to

correctly use pseudo-random number generators in parallel programs.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

845

Fig. 2. Evolution of option price in time. Several Monte Carlo trajectories and the average are

shown.

Another group of practical classes is devoted to computational physics. One exam-

ple is based on a research project in plasma physics done by a large group of theoreti-

cal and experimental physicists, mathematicians and software developers from the

UNN HPC Center, Institute of Applied Physics of Russian Academy of Sciences and

Chalmers University of Technology. The example concerns solving Maxwell’s equa-

tions in 3D space using the Finite Difference Time Domain method, a cell of the grid

used is given at Fig. 3. We discuss choosing data layout, vectorization, scaling effi-

ciency on Intel Xeon Phi. Another example is Monte Carlo simulation of brain sens-

ing by optical diffuse spectroscopy based on a joint research by the UNN HPC Center

and Institute of Applied Physics. We show problem statement and demonstrate results

of a straightforward implementation of Monte Carlo simulation. Using a profiler, we

show an approach to change data structures in order to improve memory efficiency

and load balancing on Xeon Phi. The methodical value of these two examples is to

demonstrate a pragmatic choice of data structures and approaches to load balancing

on many-core architectures.

Fig. 3. A cell of the spatial grid used in the Finite Difference Time Domain method.

6 Assessment of Student Performance

As a very basic form of assessment, all students pass online testing on every module

of the course. While useful for monitoring the current progress, it only focuses on

theoretical knowledge, not practical skills. Thus, the main form of assessment is solv-

ing one or several computational problems. We believe it is a better form of assess-

ment since it covers the whole cycle of computational scientist work: studying meth-

ods, creating a serial implementation, verifying its correctness, creating a parallel

implementation, optimizing its performance and scaling efficiency.

There are currently three groups of test problems:

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

846

9

1. Block algorithms for dense linear algebra problems (e.g. block LU and Cholesky

factorization).

2. Iterative solvers for sparse systems of linear equations (e.g. conjugate gradient

method).

3. Solvers for ODEs and PDEs (e.g. finite-difference schemes).

Each student is randomly assigned one problem from each group to provide a good

coverage of the course material.

For each problem we provide sets of parameters to be used for testing and require-

ments for performance and scaling efficiency. An implementation is accepted once it

passes all tests in terms of correctness, performance and scaling efficiency.

On a technical side, we use an automated checking system based on the open

source ejudge software (https://ejudge.ru/). Students upload source code files and a

make file via a web interface. The system builds the submitted code, runs it on all test

items, and checks correctness and performance. The specific way of checking the

correctness depends on the type of a problem. For example, for the direct methods for

solving systems of linear equations, the checking is performed by substitution (with a

tolerance depending on a norm of the matrix); for the methods for solving differential

equations, the accordance of behavior of the error when increasing the grid dimen-

sionality to the theoretical properties of the methods is checked. The efficiency of

parallel implementations is checked by means of comparing the speed-up relative to

the sequential version with the threshold value dependent on the problem.

Let us present two examples of problem statements.

Example 1. The conjugate gradient method for sparse systems of linear equations.

Problem statement: Implement the conjugate gradient method for solving a sparse

symmetric system of linear equations in form Ax = b. Choose an exact solution x*

and use Ax* as the right-hand side. Use the norm of the difference between the con-

secutive approximations as the stop condition. Output the norm of the residual on the

last step of the method.

Input format: a sparse symmetric matrix in .mtx format (from the University of

Florida Sparse Matrix Collection).

Output format: a single number that is the norm of the residual on the last step of

the method.

Verification: checking that the norm of the residual does not exceed 1% of the

norm of the input matrix.

Limitations of the problem size: no more than 100 000 000 non-zero elements in

the input matrix.

Requirements on scalability: the scaling efficiency is not less than 50%.

Example 2. The Crank-Nicolson method for solving the 1D heat equation.

Problem statement: Implement the Crank-Nicolson method for solving the 1D dy-

namic heat equation with the Dirichlet boundary conditions. Choose a non-trivial

function as the exact solution and construct the right-hand side, initial and boundary

conditions accordingly. Use the cyclic reduction method for solving the resulting

system of linear equations with a tridiagonal matrix.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

847

Input format: the number of grid nodes on space and time axes.

Output format: the maximum difference between the exact and numerical solutions

on the grid.

Verification: steadily increasing the number of grid nodes checking that the error is

proportional so the sum of squares of space and time steps.

Limitations of the problem size: the total number of grid nodes is no more than 1

000 000.

Requirements to scalability: the scaling efficiency is not less than 40%.

7 Conclusion

This paper describes the Parallel Numerical Methods course for Master’s program in

computational science at the Lobachevsky State University of Nizhni Novgorod. The

main goal of the course is to bridge the gap between theoretical aspects of numerical

methods and issues of implementation for modern multicore and manycore systems.

This is an important chain in training specialists capable of working in multidiscipli-

nary scientific and engineering groups. The course relies on basic knowledge of nu-

merical methods and parallel programming obtained during Bachelor’s programs and

concentrates of parallelization and efficiency.

The course has a flexible modular structure. Each module is devoted to a key area

of numerical methods. Most lectures demonstrate a whole cycle from a mathematical

model to results of computational experiments in terms of accuracy and efficiency.

Most practical classes are devoted to solving computational problems in different

areas. An important feature is that many of practical classes are based on research

done at the UNN HPC Center and therefore illustrate issues, which students may en-

counter in their research and future career. Assessment of student performance is

mostly done based on solving test computational problems. By means of an automat-

ed system, we control accuracy of submitted solutions as well as performance and

scaling efficiency.

Course materials are currently available in Russian on the website

http://www.hpcc.unn.ru/?doc=491. These materials have been used for several train-

ing programs for teachers and researchers. Over 500 students have been trained since

2012. There is an ongoing process of extending the materials and translating them to

English; a preliminary English version of materials for some modules is available at

http://hpc-education.unn.ru/en/trainings/collection-of-courses. Another direction of

future work is creating a course for one of the widely used e-learning systems.

References

1. Bastrakov, S., Meyerov, I., Gergel, V., Gonoskov, A., Gorshkov, A., Efimenko, E., et al.

(2013). High Performance Computing in Biomedical Applications. Procedia Computer

Science, vol. 18, pp. 10-19.

2. Stoer, J., & Bulirsch, R. (2013). Introduction to numerical analysis (Vol. 12). Springer Sci-

ence & Business Media.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

848

11

3. Mathews, J. H., & Fink, K. D. (1999). Numerical methods using MATLAB (Vol. 31). Up-

per Saddle River, NJ: Prentice hall.

4. Hamming, R. (2012). Numerical methods for scientists and engineers. Courier Corpora-

tion.

5. Andrews, G. R. (1999). Foundations of parallel and distributed programming. Addison-

Wesley Longman Publishing Co., Inc.

6. Prasad, Gupta, Rosenberg, Sussman, & Weems. Topics in Parallel and Distributed Compu-

ting: Introducing Concurrency in Undergraduate Courses (1st ed.). Morgan Kaufmann.

7. Jeffers, J., & Reinders, J. (Eds.). (2014). High Performance Parallelism Pearls: Multicore

and Many-core Programming Approaches (1st ed.).

8. Jeffers, J., Reinders, J., & Sodani, A. (Eds.). (2016). Intel® Xeon Phi™ Processor High

Performance Programming, Knights Landing Edition.

9. Hwu, W.-m. W. (Ed.). (2011). GPU Computing Gems Jade Edition. Morgan Kaufmann.

10. Introduction to numerical methods. (2010). Retrieved Jan 2017, from MIT Open

Courseware: http://ocw.mit.edu/courses/mathematics/18-335j-introduction-to-numerical-

methods-fall-2010

11. Introduction to numerical analysis. (2004). http://ocw.mit.edu/courses/mathematics/18-

330-introduction-to-numerical-analysis-spring-2004.

12. CME206 – Introduction to Numerical Methods for Engineering. (2016).

http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=11

683.

13. Math 128A: Numerical Analysis. (2014). Retrieved Jan 2017, from

http://persson.berkeley.edu/128A.

14. Course MAT321 Numerical Methods. (2014). Retrieved Jan 2017, from

https://www.math.princeton.edu/undergraduate/course/MAT321.

15. Burden, R., & Faires, J. (2010). Numerical Analysis (9th ed.). Brooks-Cole.

16. Kincaid, D., & Cheney, E. (2012). Numerical Mathematics and Computing (7th ed.).

Brooks-Cole.

17. Demmel, J. (2016). Matrix Computations / Numerical Linear Algebra. https://people.eecs.

berkeley.edu/~demmel/ma221_Spr16.

18. Saad, Y. (2015). Computational Aspects of Matrix Theory, Sparse Matrix Computations.

http://www-users.cs.umn.edu/~saad/teaching.html

19. Dongarra, J. (2012). Scientific Computing for Engineers: Spring 2012.

http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/SPRING-2012/cs594-

2012.htm.

20. Heath, M. (2013). Parallel numerical algorithms.

http://www.mat.unimi.it/users/pavarino/heath_2013.

21. Edelman, A. (2016). Numerical Computing with julia. http://courses.csail.mit.edu/18.337/

2016/ calendar.html.

22. Gergel, V., Liniov, A., Meyerov, I., & Sysoyev, A. (2014). NSF/IEEE-TCPP Curriculum

Implementation at University of Nizhni Novgorod In: Proceedings of Fourth NSF/TCPP

Workshop on Parallel and Distributed Computing Education, pp. 1079-1084.

23. Muller, J. M., Brisebarre, N., & De Dinechin, F. (2009). Handbook of floating-point

arithmetic. Springer Science & Business Media.

24. Pirova, A., Meyerov, I., Kozinov, E., & Lebedev, S. (2016). PMORSy: parallel sparse ma-

trix ordering software for fill-in minimization. Optimization methods and software , 274-

289.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

849

https://people.eecs/
http://courses.csail.mit.edu/18.337/

25. Meyerov, I., Sysoyev, A., Astafiev, N., & Burylov, I. (2014). Performance Optimization of

Black-Scholes Pricing. In J. Jeffers, & J. Reinders (Eds.), High Performance Parallelism

Pearls: Multicore and Many-core Programming Approaches (pp. 319-340).

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

850

