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Abstract. The rise of computational science has facilitated rapid progress in 

many areas of science and technology over the last decade. There is a growing 

demand in computational scientists and engineers capable of efficient collabora-

tion in interdisciplinary groups. Training such specialists includes courses on 

numerical analysis and parallel computing. In this paper we present a new Mas-

ter’s course Parallel Numerical Methods which bridges the gap between theo-

retical aspects of numerical methods and issues of implementation for modern 

multicore and manycore systems. The course aims to guide students through the 

complete process of solving computational problems, from a problem statement 

to developing parallel software and analyzing results of computational experi-

ments. An important feature is that many of practical classes are based on re-

search done at the HPC Center of the University of Nizhni Novgorod and there-

fore illustrate issues, which students may encounter in their research and future 

career. 

Keywords: Education in Computational Science · Numerical Analysis · Paral-

lel Computing · Master’s Program. 

1 Introduction 

The importance and relevance of modern methods of computational science can hard-

ly be overestimated. The progress in development of computer systems and applica-

tions for solving scientific and technical problems confronts more and more new am-

bitious challenges to scientists and engineers. In many fields there is a demand for 

non-ordinary solutions which allow replacing natural experiments with computational 

ones, therefore essentially shortening the way from an innovative idea to its techno-

logical implementation. Among such fields are computer-aided design, computational 

physics, computational biomedicine and others. These areas can greatly benefit from 

collaboration of experts in different areas: researchers in natural and social sciences, 
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theoretical and applied, mathematicians, and software engineers. However, efficient 

collaboration in such multidisciplinary groups is not always easy, as different profes-

sional communities tend to have specific traditions, methods and terminology. 

A way to approach this issue is to train specialists oriented towards multidisciplinary 

collaboration as a part of Master’s programs. The institute of IT, mathematics and 

mechanics at the Lobachevsky State University of Nizhni Novgorod (UNN) has cre-

ated a Master’s program in computational science, which includes a wide range of 

topics concerning numerical simulation, applied mathematics, computational mathe-

matics, and computer science. Many students on this program are members of multi-

disciplinary groups carrying out research projects at the UNN HPC center [1]. By the 

time of graduation these students have some real-world experience in computational 

science, which can be valuable for their career. 

This paper describes a core course in our Master’s program in computational sci-

ence, Parallel Numerical Methods. To date, a considerable amount of educational and 

methodical literature on numerical methods is available, for example, the latest edi-

tions of the classical textbooks [2–4]. In the literature on numerical methods, the is-

sues of development, application and theoretical substantiation of algorithms for nu-

merical solution of various classes of mathematical problems are considered. Courses 

on theoretical aspects of numerical methods have been developed for decades with 

lots of excellent courses and materials available. Parallel programming, performance 

analysis and optimization are much more rapidly developing areas. Evolution of 

hardware, tools and technologies constantly creates new challenges and requires de-

velopment and modernization of course materials. There are respectable textbooks on 

key technologies for parallel programming, for example, [5, 6]. Some books consider 

optimization of applications from various areas for modern architectures [7–9]. Our 

Parallel Numerical Methods course aims to guide students through the complete pro-

cess of solving computational problems, from a problem statement to developing 

parallel software and analyzing results of computational experiments. The course 

forms skills in studying a problem at hand and its mathematical model, choosing ap-

propriate numerical methods, developing a parallel algorithm and its implementation 

for multicore and manycore systems, performing computational experiments and 

analyzing results in terms of accuracy and performance. An important feature of the 

course is that most problems considered are based on the experience from research 

projects done at the UNN HPC Center. These examples illustrate the common issues, 

which students are likely to encounter in their future career. 

This paper is organized as follows. Section 2 contains a short overview of courses 

on numerical analysis and numerical methods. Section 3 presents the main ideas and 

principles of our Parallel Numerical Methods course. Course structure is described in 

section 4 with examples of lectures and practical classes given in section 5. Section 6 

is devoted to assessment of student performance. Section 7 concludes the paper. 
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2 Related Work 

Courses on numerical analysis and numerical methods, for example [10–14] are de-

livered in many universities worldwide. The textbooks with several editions released, 

including [15, 16], form a methodical basis for such courses. In general, these are 

mostly classical courses on numerical methods with the main focus on theoretical 

material: theorems on approximation, stability and convergence. 

There are also courses which cover the classical topics of numerical methods and 

are directed particularly towards the issues of implementation for modern computa-

tional systems. A notable example is the Introduction to Numerical Methods course at 

MIT [10]. The course begins with considering the issues of performance, software 

optimization, and floating-point arithmetic. Then, the basic numerical algorithms of 

linear algebra (solving the eigenvalue problem, direct and iterative methods for solv-

ing systems of linear equations) are considered. There are several advanced courses 

concerning parallel aspects of numerical algorithms, most notably in linear algebra 

[17, 18]. Linear algebra problems are rather intuitive, and, therefore, very suitable to 

demonstrate the basics of parallel computing. Other numerical methods are typically 

part of courses on scientific computing, for example [19, 21]. 

This paper presents the Parallel Numerical Methods course developed at the UNN 

HPC Center based on 15 years’ experience of research in computational science. The 

course covers numerical methods and issues of parallel implementation for a wide 

range of problems: dense and sparse linear algebra, direct and iterative solvers, finite-

difference schemes for ordinary and partial differential equations, Monte Carlo meth-

ods. 

3 Course Description 

The Parallel Numerical Methods course described in this paper is a core course of the 

Master’s program in computational science at the Lobachevsky State University of 

Nizhni Novgorod. The goals of the course are mastery of numerical algorithms and 

considering the issues of implementation, performance and scalability on modern 

hardware. The course covers parallel aspects of the classical topics of numerical 

methods, including dense and sparse linear algebra, ordinary and partial differential 

equations, Monte Carlo methods. 

Course prerequisites include fundamentals of linear algebra, mathematical analysis, 

numerical methods, and parallel programming. This set of skills is rather typical for 

graduates of Bachelor’s programs in applied mathematics and computer science, such 

as [22]. Since some students with a solid mathematical background may not be famil-

iar with parallel programming, for example, Bachelor’s in mathematics, our curricu-

lum offers an optional parallel programming course in the same semester, which 

completely covers demands of the Parallel Numerical Methods course. 

The course is based on the following main principles: 
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1. A wide range of topics: the course covers basic topics of numerical methods, wide-

ly used for scientific and engineering computing in various areas. 

2. Balance between numerical analysis and computer science: the course combines 

mathematically strict presentation of material with proper attention to efficient im-

plementation for parallel hardware. 

3. Integrity: the course demonstrates the whole chain of stages required to solve a 

computational problem (problem statement, mathematical model, serial algorithm, 

parallel algorithms, implementation and parallelization, computational experiment 

and analysis). 

4. Real-world experience: demonstrating approaches used by research groups to solve 

state-of-the-art problems of computational science. 

5. Assessment based on applications: assessment of student performance is done 

based mostly on ability to solve a problem going through all stages, from problem 

statement to computational experiment and analysis. 

6. Flexibility: the course is designed in such a way that modules / practical classes are 

to a large degree independent. 

Based on the above mentioned principles and course prerequisite we have decided 

to give basic mathematical statements and theorems in the lectures without proofs, 

making references to textbooks on numerical methods. Most lectures combine theo-

retical descriptions of methods with approaches to parallel implementation and 

demonstrations of performance results. Each practical class is a detailed study and 

development of a parallel implementation for a computational problem, using tools 

part of Intel Parallel Studio (C++ Compiler, Cilk Plus, TBB, MKL, Amplifier). The 

course contains a large number of case studies demonstrating applications from com-

putational physics, computational finance, computational biology, and other areas. 

4 Course Outline 

Below we give a list of basic modules of the course with brief descriptions. 

1. Elements of computer arithmetic. The topic of this module is representation of 

floating point numbers in computer memory [23]. The problems of computational 

error accumulation and methods for its reduction and control are discussed. Typical 

examples, where error accumulation may result in incorrect computation results, 

are presented. 

2. Direct methods for solving systems of linear equations. This module is devoted to 

direct methods of solving systems of linear algebraic equations: Gaussian elimina-

tion, Cholesky decomposition, Thomas and reduction methods. The classical 

methods are presented and estimates of complexity given. We demonstrate insuffi-

cient efficiency of naïve implementations of these methods on modern computa-

tional architectures. The idea of block data processing is highlighted consistently. 

The problems of sparse algebra are considered here as well. A brief review of the 

data structures for storing sparse matrices is given, typical problems arising when 

performing the basic operations with sparse matrices are considered. Comparison 

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

842



5 

of the matrix-vector and matrix-matrix multiplication algorithms for the cases of 

dense and sparse matrices is given. Cholesky decomposition is considered as an 

example of a more complex computational algorithm for sparse matrices. The issue 

of increasing amount of nonzero elements after factorization is demonstrated, sev-

eral algorithms of matrix reordering to reduce the fill-in of the resulting matrix 

(minimum degree and nested dissection methods) are presented. 

3. Iterative methods for solving systems of linear equations. This module considers 

iterative methods for solving the systems of linear equations, from the basic meth-

ods (simple iteration, Jacobi, Seidel, upper relaxation methods) to Krylov-type 

methods (generalized minimal residual, conjugated and biconjugated gradient 

methods). We discuss approaches to parallelization, give theoretical and experi-

mental estimates of speed-up. The module also covers some methods of precondi-

tioning: the basic methods (Jacobi method, Gauss-Seidel method) and the methods 

based on the incomplete LU-decomposition (ILU(0) and ILU(p) factorization). 

4. Methods for solving ordinary differential equations. This module concerns the 

basic methods for solving ODEs: Runge-Kutta methods and Adams methods. The 

parallel variants of the methods for solving systems of ODEs are considered. For 

Runge-Kutta methods, the pipelining scheme of solving systems of ODEs with a 

sparse right-hand part is given. Solving a system of ODEs arising from simulating 

a neural system is considered as an illustrative example. 

5. Methods for solving differential equations in partial derivatives. The module en-

compasses the issues of parallel solving differential equations in partial derivatives. 

Typical equations in partial derivatives (of hyperbolic, parabolic, and elliptical 

types) are considered. The finite differences method is delivered to the students as 

a method of reduction of differential equations to algebraic ones, leading to solving 

the difference equations. The explicit and implicit schemes of solving parabolic 

and hyperbolic equations and issues of parallel implementation are considered. The 

advantages and drawbacks of each approach are discussed. The pentadiagonal sys-

tem of linear equations arising while solving 2D Poisson equation is discussed sep-

arately. The wave scheme of data processing in parallel solving of this system by 

iterative methods is presented. 

6. Monte Carlo methods. This module introduces general concepts of the Monte Car-

lo methods. It describes issues of utilizing pseudo-random number generators in 

parallel programs, ways of reducing variance and presents applications for multi-

dimensional integration, computational physics, and computational finance. 

5 Conducting the Classes 

The lecture part of the course concerns construction and analysis of efficient parallel 

algorithms from various topics of numerical methods. The presentation is accompa-

nied by the results of the computational experiments and analysis. For example, a 

lecture on Cholesky factorization of a dense matrix is organized as follows. We start 

with the definition of Cholesky factorization and describe applications for solving 

systems of linear equations with a symmetric positive-definite matrix. Then we show 
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how a naive algorithm can be constructed based on the definition and estimate its 

complexity. Approaches to parallelization are considered and scaling efficiency ob-

tained for our implementation is demonstrated. We proceed to estimating cache effi-

ciency of the naive algorithm and introducing the idea of blocking to increase cache 

reuse. Serial and parallel block Cholesky factorization algorithms are presented along 

with performance and scaling efficiency of our implementation compared to the naive 

algorithm. Analysis of the results concludes the lecture. 

Another section of the course covers sparse linear algebra algorithms. One of the 

lectures considers sparse direct solvers. We discuss advantages and disadvantages of 

direct methods, give a general computational scheme, review main approaches to 

parallelization of sparse matrix factorization, and introduce widely used software. The 

demonstration is done using the open source sparse matrix reordering library 

PMORSy [24] developed at the UNN HPC Center. The example of workload distribu-

tion during a sparse matrix reordering is shown below (Fig. 1). 

 

Fig. 1. Task mapping for a test matrix on 16 threads. Logical tasks are nodes of the graph, 

dependencies between them are edges. Descendant nodes correspond to the tasks generated 

after the parent task is completed. Same colored nodes are processed by the same thread [24]. 

Each practical class is a study of a selected computational problem. A problem de-

scription includes a problem statement, brief information on the research area, numer-

ical method, possible approaches of parallelization, analysis of correctness, perfor-

mance and scaling efficiency, and possible ways to improve it. The class is conducted 

either in form of a demonstration and analysis done by a teacher or in form of stu-

dents gradually developing and analyzing their implementation following the descrip-

tion. 

Let us describe several practical classes, which are part of the course. One group of 

classes is based on research done by a group of mathematicians and computer scien-

tists on computational finance. A feature of this area is that problems are often seem-

ingly simple; however the models and methods used are rather complicated and rely 
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on statistics, differential equations and mathematical optimization. Nevertheless, all 

formalisms used have a clear financial interpretation, which makes it easier to intro-

duce financial terms while keeping the material mathematically strict. Some of the 

methods used in computational finance can also be applied for other areas. Below we 

describe two concrete examples of this group. 

The first example is performance optimization of Black-Scholes pricing. The prob-

lem is to calculate the fair prices for a set of European options [25], which is a fairly 

simple problem of financial mathematics. In this case, the result can be calculated 

analytically. From the programming point of view, this is a trivial problem (just to 

apply a formula for input data); however, it demonstrates that the computational time 

can vary by an order of magnitude even in such a simple program depending on pro-

gramming and optimization skills and techniques. First, we introduce a model and 

basic concepts of a financial market and some intuitive descriptions of the option 

pricing problem briefly. We create a basic implementation, analyze its performance 

and improve it in a step-by-step fashion: eliminate unnecessary type casts, carry out 

invariants, perform mathematical transforms that replace heavy math routines with the 

lighter ones, vectorize and parallelize, perform warm-up to reduce overhead on thread 

creation, try reducing precision of floating-point operations, utilize streaming stores. 

The effects of these optimization techniques are demonstrated on both CPU and Intel 

Xeon Phi. The main methodological direction of this work is to teach pragmatics of 

using mathematical routines (choosing efficient mathematical library, controlled re-

duction of precision if justified), vectorization by compiler directives and optimiza-

tion for manycore architectures. The detailed description of this work is published in 

[25]. 

The second example on computational finance is performance optimization of 

Monte Carlo option pricing (Fig. 2). We consider the case where the fair prices can-

not be computed analytically. A widely used method is Monte Carlo simulation, 

which is relatively easy to implement and has a huge degree of parallelism. We cover 

topics of correct pseudo-random number generation in parallel applications and 

demonstrate typical errors in this area. Efficiency of low-discrepancy sequences and 

approaches to parallel implementation are shown. We demonstrate methods to check 

accuracy of a Monte Carlo simulation. The main value for students is to learn how to 

correctly use pseudo-random number generators in parallel programs. 
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Fig. 2. Evolution of option price in time. Several Monte Carlo trajectories and the average are 

shown. 

Another group of practical classes is devoted to computational physics. One exam-

ple is based on a research project in plasma physics done by a large group of theoreti-

cal and experimental physicists, mathematicians and software developers from the 

UNN HPC Center, Institute of Applied Physics of Russian Academy of Sciences and 

Chalmers University of Technology. The example concerns solving Maxwell’s equa-

tions in 3D space using the Finite Difference Time Domain method, a cell of the grid 

used is given at Fig. 3. We discuss choosing data layout, vectorization, scaling effi-

ciency on Intel Xeon Phi. Another example is Monte Carlo simulation of brain sens-

ing by optical diffuse spectroscopy based on a joint research by the UNN HPC Center 

and Institute of Applied Physics. We show problem statement and demonstrate results 

of a straightforward implementation of Monte Carlo simulation. Using a profiler, we 

show an approach to change data structures in order to improve memory efficiency 

and load balancing on Xeon Phi. The methodical value of these two examples is to 

demonstrate a pragmatic choice of data structures and approaches to load balancing 

on many-core architectures. 

 

Fig. 3. A cell of the spatial grid used in the Finite Difference Time Domain method. 

6 Assessment of Student Performance 

As a very basic form of assessment, all students pass online testing on every module 

of the course. While useful for monitoring the current progress, it only focuses on 

theoretical knowledge, not practical skills. Thus, the main form of assessment is solv-

ing one or several computational problems. We believe it is a better form of assess-

ment since it covers the whole cycle of computational scientist work: studying meth-

ods, creating a serial implementation, verifying its correctness, creating a parallel 

implementation, optimizing its performance and scaling efficiency. 

There are currently three groups of test problems: 
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1. Block algorithms for dense linear algebra problems (e.g. block LU and Cholesky 

factorization). 

2. Iterative solvers for sparse systems of linear equations (e.g. conjugate gradient 

method). 

3. Solvers for ODEs and PDEs (e.g. finite-difference schemes). 

Each student is randomly assigned one problem from each group to provide a good 

coverage of the course material. 

For each problem we provide sets of parameters to be used for testing and require-

ments for performance and scaling efficiency. An implementation is accepted once it 

passes all tests in terms of correctness, performance and scaling efficiency. 

On a technical side, we use an automated checking system based on the open 

source ejudge software (https://ejudge.ru/). Students upload source code files and a 

make file via a web interface. The system builds the submitted code, runs it on all test 

items, and checks correctness and performance. The specific way of checking the 

correctness depends on the type of a problem. For example, for the direct methods for 

solving systems of linear equations, the checking is performed by substitution (with a 

tolerance depending on a norm of the matrix); for the methods for solving differential 

equations, the accordance of behavior of the error when increasing the grid dimen-

sionality to the theoretical properties of the methods is checked. The efficiency of 

parallel implementations is checked by means of comparing the speed-up relative to 

the sequential version with the threshold value dependent on the problem. 

Let us present two examples of problem statements. 

Example 1. The conjugate gradient method for sparse systems of linear equations. 

Problem statement: Implement the conjugate gradient method for solving a sparse 

symmetric system of linear equations in form Ax = b. Choose an exact solution x* 

and use Ax* as the right-hand side. Use the norm of the difference between the con-

secutive approximations as the stop condition. Output the norm of the residual on the 

last step of the method. 

Input format: a sparse symmetric matrix in .mtx format (from the University of 

Florida Sparse Matrix Collection). 

Output format: a single number that is the norm of the residual on the last step of 

the method. 

Verification: checking that the norm of the residual does not exceed 1% of the 

norm of the input matrix. 

Limitations of the problem size: no more than 100 000 000 non-zero elements in 

the input matrix. 

Requirements on scalability: the scaling efficiency is not less than 50%. 

Example 2. The Crank-Nicolson method for solving the 1D heat equation. 

Problem statement: Implement the Crank-Nicolson method for solving the 1D dy-

namic heat equation with the Dirichlet boundary conditions. Choose a non-trivial 

function as the exact solution and construct the right-hand side, initial and boundary 

conditions accordingly. Use the cyclic reduction method for solving the resulting 

system of linear equations with a tridiagonal matrix. 
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Input format: the number of grid nodes on space and time axes. 

Output format: the maximum difference between the exact and numerical solutions 

on the grid. 

Verification: steadily increasing the number of grid nodes checking that the error is 

proportional so the sum of squares of space and time steps. 

Limitations of the problem size: the total number of grid nodes is no more than 1 

000 000. 

Requirements to scalability: the scaling efficiency is not less than 40%. 

7 Conclusion 

This paper describes the Parallel Numerical Methods course for Master’s program in 

computational science at the Lobachevsky State University of Nizhni Novgorod. The 

main goal of the course is to bridge the gap between theoretical aspects of numerical 

methods and issues of implementation for modern multicore and manycore systems. 

This is an important chain in training specialists capable of working in multidiscipli-

nary scientific and engineering groups. The course relies on basic knowledge of nu-

merical methods and parallel programming obtained during Bachelor’s programs and 

concentrates of parallelization and efficiency. 

The course has a flexible modular structure. Each module is devoted to a key area 

of numerical methods. Most lectures demonstrate a whole cycle from a mathematical 

model to results of computational experiments in terms of accuracy and efficiency. 

Most practical classes are devoted to solving computational problems in different 

areas. An important feature is that many of practical classes are based on research 

done at the UNN HPC Center and therefore illustrate issues, which students may en-

counter in their research and future career. Assessment of student performance is 

mostly done based on solving test computational problems. By means of an automat-

ed system, we control accuracy of submitted solutions as well as performance and 

scaling efficiency. 

Course materials are currently available in Russian on the website 

http://www.hpcc.unn.ru/?doc=491. These materials have been used for several train-

ing programs for teachers and researchers. Over 500 students have been trained since 

2012. There is an ongoing process of extending the materials and translating them to 

English; a preliminary English version of materials for some modules is available at 

http://hpc-education.unn.ru/en/trainings/collection-of-courses. Another direction of 

future work is creating a course for one of the widely used e-learning systems. 
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