
The comparison of large-scale graph processing

algorithms implementation methods for Intel KNL and

NVIDIA GPU

Ilya Afanasyev
1
 and Vladimir Voevodin

1

1 Lomonosov Moscow State University, Moscow, Russia

Abstract. The paper describes implementation approaches to large-graph pro-

cessing on two modern high-performance computational platforms: NVIDIA

GPU and Intel KNL. The described approach is based on a deep a priori analy-

sis of algorithm properties that helps to choose implementation method correct-

ly. To demonstrate the proposed approach, shortest paths and strongly connect-

ed components computation problems have been solved for sparse graphs. The

results include detailed description of the whole algorithm’s development cycle:

from algorithm information structure research and selection of efficient imple-

mentation methods, suitable for the particular platforms, to specific optimiza-

tions for each of the architectures. Based on the joint analysis of algorithm

properties and architecture features, a performance tuning, including graph stor-

age format optimizations, efficient usage of the memory hierarchy and vectori-

zation is performed. The developed implementations demonstrate high perfor-

mance and good scalability of the proposed solutions. In addition, a lot of atten-

tion was paid to profiling implemented algorithms with NVIDIA Visual Profiler

and Intel® VTune ™ Amplifier utilities. This allows current paper to present a

fair comparison, demonstrating advantages and disadvantages of each platform

for large-scale graph processing.

Keywords: Graph algorithms, GPU, KNL, CUDA, vectorization, SSSP, SCC,

large-scale graph processing.

1 Introduction

The interest to large-scale graph processing is growing rapidly, since graphs success-

fully emulate real-world objects and connections between them. In many areas, peo-

ple need to identify some patterns and rules from object relationships that results into

processing large amounts of data. The examples of such objects and relationships are:

analysis of social, semantic and Internet networks, infrastructural problems solution

(analysis of transport and energy networks), biology (analysis of the network of pro-

tein-protein interactions), health-care (epidemic spreading analysis), social-economic

modelling. All those problems have one common property: their model graphs have a

very large size, so a parallel approach is required to perform computations in reasona-

ble amount of time.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

883

2

The question, which parallel computational platforms are able to process graphs

more efficiently, is still open. Graphic accelerators and coprocessors perform really

well for solving traditional problems, such as linear algebra computations, image

processing or solving molecular dynamics problems, since they provide high perfor-

mance and energy efficient computational power together with high throughput

memory. The most well-known and widely used families of coprocessors are NVidia

GPU and Intel Xeon Phi. Recent important trend is that vendors try to combine cen-

tral processors and coprocessor functions, which results into modern KNL Xeon PHI

architecture.

2 Target architectures

2.1 NVidia GPU

Modern NVidia GPUs belong to three architectures: Kepler, Maxwell and Pascal.

Currently, Kepler is the most common and widely used architecture in HPC. Tesla

K40 accelerator, which has been used for all testing in current paper, has 2880 cores

with clock signal rate of 745 MHz. This GPU provides peak performance up to 4.29

TFLOPs on single precision computations and 12 GB device memory with 288 GB/s

bandwidth. The PCI-express 3.0 bus with 32 Gbps bandwidth is used to maintain

connection between host and device. Memory hierarchy also includes L1 (64 KB),

and L2 (1.5 MB) caches. Device computational model is very important: thread is a

single computational unit; 32 threads are grouped into a warp, which works using

SIMD approach. The warp performance is also very affected by memory access data

pattern (coalesced memory access) and conditional operations presence.

During the tests the corresponding host was equipped with Intel(R) Xeon(R) CPU

E5-2697 v3 @ 2.60GHz processor. For compilation NVCC v6.5.12 from CUDA

Toolkit 6.5 has been used with –O3 –m64 –gencode arch=compute_35,code=sm_35

options.

2.2 Intel KNL

The newest architecture of Intel Xeon Phi coprocessors is Knights Landing (KNL).

Each processor has 64-72 cores (in current paper a 68-core accelerator is used) with a

clock signal rate of 1.3-1.5 GHz. Processor provides a peak performance up to 6

TFLOPs on single precision computations. It also has two memory levels: high-

bandwidth MCDRAM memory with a capacity up to 16 GB and bandwidth up to 400

GB/s, and DDR4 memory with a capacity up to 384 GB and bandwidth up to 90

GB/s. Cores are grouped in Tile-s (pair of cores), each having a common 1 MB size

L2 cache. Another important feature of Intel KNL is the support of vector instructions

AVX-512, containing gather and scatter operations, which are necessary for graph

processing. For compilation ICC 17.0.0 has been used with –O3 –m64 options.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

884

3

3 State of art

Algorithms for solving shortest paths problem for CPU and GPU are described fol-

lowing papers: [1][2][3]This approach can be applied for KNL architecture too, which

is demonstrated in the current paper. Sequential (Tarjan) algorithm for solving strong-

ly connected components problem is presented in [4]. Another algorithm (Forward-

Backward), which has a much larger parallelism potential, but also have a larger

computational complexity, is presented in the papers [5] and [6]. CUDA implementa-

tion of this algorithm is also researched in papers [6] and [8].

4 Research methodology

The current paper uses the following structure to describe both graph problems. First,

an accurate mathematical problem definition is formulated, to prevent any ambiguity.

After that, a review of most important possible algorithms is presented together with

target architecture features. Based on the results of this survey, well-suited algorithms

for all architectures are selected.

After that, first implementation of all selected algorithm is developed, followed by

a series of iterative optimizations and profiling. It is extremely important to analyze

the final implementation perfomance, and how well the implementations use target

hardware features. As a result, conclusions about advantages and disadvantages of

both architectures for solving a specific graph problem can be presented.

5 Shortest paths problem

5.1 Mathematical description

A directed graph 𝐺 = (𝑉, 𝐸) with vertices 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑛) and edges 𝐸 =
(𝑒1, 𝑒2, … , 𝑒𝑚) is given. Each edge 𝑒 ∈ 𝐸 has a weight value 𝑤(𝑒). The path is de-

fined as edges sequence 𝜋𝑢,𝑣 = (𝑒1, … , 𝑒𝑘), beginning in vertex 𝑢 and ending in ver-

tex 𝑣, so that each edge follows another one. A path length can be defined as

𝑤(𝜋𝑢,𝑣) = ∑ 𝑤(𝑒𝑖)
𝑘
𝑖=1 . A path 𝜋𝑢,𝑣

∗ with minimal possible length between vertices 𝑢

and 𝑣 is called a shortest path: 𝑑(𝑢, 𝑣) = 𝑤(𝜋𝑢,𝑣
∗) = min 𝑤(𝜋𝑢,𝑣).

Depending on a vertices pair choice, between which a search is performed, the

shortest paths problem can be formulated in three different ways:

─ SSSP (single source shortest paths) — shortest paths from a single selected source

vertex are computed.

─ APSP (all pairs shortest paths) — shortest paths between all pairs of graph vertices

are computed.

─ SPSP (some pairs shortest paths) — shortest paths between some pre-selected pairs

of vertices are computed.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

885

4

In the current paper the SSSP problem will be researched, since it is the simplest

and most basic between these problems: for example, APSP problem for large-scale

graphs can be solved by repeated calls of SSSP operation for each source vertex, since

traditional algorithms, such as Floyd-Warshal, can not be applied because high

memory requirements.

5.2 Algorithm descriptions

SSSP problem can be solved with two traditional algorithms: Dijkstra and Bell-

man-Ford.

─ Dijkstra's algorithm is designed to solve the problem in graphs with edges, hav-

ing only non-negative weights. A variation of the algorithm, implemented with a

Fibonacci heap has the most efficient time complexity 𝑂(|E| + |V|log|V|). The al-

gorithm’s computational core includes sequential traversals of vertices beginning

from the source vertex; during each traversal algorithm while puts adjacent vertices

to the stack (or heap), so they can be processed later. As a result, the global verti-

ces traversal in the algorithm can be performed only sequentially, while local adja-

cent vertices traversal can be executed in parallel as described in [10], but it’s usu-

ally provides not enough parallelism for significant GPU utilization.

─ Bellman-Ford algorithm is designed to solve the problem in graphs, including

those which have edges with negative weights. The computational core of the algo-

rithm consists of a few iterations, each of which requires traverses of all graph

edges. Computations continue until there are no changes in the distance array. The

algorithm has a sequential complexity equal to 𝑂(𝑝|E|), where 𝑝 is the maximum

possible length of the shortest path from the source vertex to any other. As a con-

sequence, the worst-case complexity is equal to 𝑂(|V||E|). However, for many re-

al-world graphs, the algorithm is terminates in a much smaller amount of steps.

Moreover, the algorithm has a significant parallel potential: its parallel complexity

is equal to 𝑂 (𝑝
|E|

𝑁
), where N is the number of processors being used.

5.3 Algorithm selection for target architectures

Before the implementation, one needs to select the algorithms, most suitable for all

target architectures. Both KNL and NVidia GPU have a large number of cores with a

relatively low clock rate. If Dijkstra’s algorithm, which is strictly sequential, is used

for computations, all those cores will be idle, and, in addition, it will be very difficult

to handle a stack or queue complex data structures on cores with a low clock rate. At

the same time, Bellman-Ford algorithm does not require a processing of complex data

structures; moreover, on any iteration this algorithm performs a parallel traversal of

all graph edges. It will be shown later, that those properties will compensate algo-

rithm’s greater arithmetical complexity. In addition, it is possible to develop Bellman-

Ford algorithm modification, which allows to process graphs with a size larger than

the amount of available memory. This property is very important advantage for archi-

tectures with a limited amount of available memory, such as GPUs.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

886

5

Before implementing the chosen algorithm, it is important to determine the storage

data format for input graphs. For Bellman-Ford algorithm, the most suitable format is

an edges list, where each edge is stored as a triple {vertex-start, vertex-end, edge’s

weight}; all edges are stored in a single array in any order.

5.4 GPU implementation

5.4.1. Basic version

CUDA-kernel, implementing the basic version of Bellman-Ford algorithm for the

GPU is presented in listing 1:

 Listing 1: Bellman-Ford algorithm’s CUDA-kernel

The presented non-optimized kernel fully corresponds to the classical version of

Bellman-Ford algorithm. The kernel is executed on number of threads, equal to the

graph edges count. Each thread gets its corresponding edge’s data (5) (6) (7), then

reads current distance data of source and destination vertices of corresponding edge

(9) (10). If those values minimize current distance to the destination vertex, the array

of distances (12),(14) is updated. In figure 1 the results of profiling (obtained with

NVidia Visual Profiler) of the kernel are presented, clearly demonstrating kernel’s

disadvantages.

Fig. 1. Analysis of memory bandwidth usage for the basic kernel implementation.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

887

6

A first important observation is that this kernel is memory-bound, since every two

arithmetic operations are followed by 6 memory access operations. Second, there is

an indirect addressing during (9),(10),(12) and (14) memory accesses, where the op-

timal memory access pattern for the GPU is violated (coalesced memory access). In

addition, values src_id and dst_id may point into completely different memory loca-

tions, what prevents efficient using of GPU caches.

The results of profiling clearly demonstrate the main reason of basic kernel’s low

performance — inefficient usage of GPU memory bandwidth (“device memory total”

metric, due to non-coalesced memory accesses), as well as weak usage of L1 and L2

caches (due to weak locality of data accesses). These problems can be avoided with

graph storage format optimization, which allows changing memory access pattern,

making it more suitable for GPU architecture.

5.4.2. Graph storage format optimization

In the current section, the main optimization (graph edges reordering) is described. It

allows improving memory access pattern, to achieve higher performance, since the

data with indirect memory accesses will be placed more locally and stored in the

caches. Modern K40 GPUs of Kepler architecture are equipped with 64 KB of L1

cache and 1.5 MB of L2 cache. The distances array has 1 MB size for a graph with

218 vertices, 2 MB for a graph with 219 vertices; so, even for medium-scaled graphs,

the whole distance array can’t be fully placed in caches.

That is why edges rearrangement strategy is used to make sure that the data from

distances arrays remains in cache memory as long as possible. The reordering process

is illustrated in Figure 3. A similar reordering approach is described in [7].

An array of distances is divided into segments (red, green and blue colors – in Fig-

ure 2), which size is equal to the size of the lowest level cache - L2 for GPU (size 2

on figure 2). After that, the edges are placed into the array in the following way: in the

beginning of the array edges are stored, which source vertices belong the first seg-

ment of the distances array, then to the second, then to the third. Edges with the same

segment number are sorted with the similar strategy, applied to their destination verti-

ces.

Fig. 2. Graph edges reordering example for graph with 5 vertices and 16 edges.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

888

7

Due to described sorting approach, threads from the same warp will be accessing

data within one or two segments; this result into a smaller number of different

memory cells accessed by a single warp. Without this optimization, 32 different

memory cells could be accessed, which would lead to a 32-times slowdown. The pro-

filing report of optimized kernel is presented on figure 3. It demonstrates almost 5

times increase in used memory bandwidth (device memory reads / total). In addition,

for the threads from a single block, distance array data will be stored in L2 cache for a

much longer time, which can be also observed on presented profiling report: L2 cache

used bandwidth is 15x times better now.

Fig. 3. Analysis of memory bandwidth of basic kernel with optimized graph format

storage

5.4.2. GPU implementation results

The performance comparison between basic and fully optimized kernel versions

(with graph storage format optimization) is demonstrated on figure 4. Another im-

portant GPU-program characteristic is the percentage of program execution time,

spent for data transfers between host and device. That is why fully optimized version

is represented with two curves: with and without time spent for memory copy opera-

tion. The performance is measured with TEPs metrics — number of traversed edges

per second (the edge is considered “traversed” when the data about it’s source and

destination vertices is requested). RMAT graphs with average connection count equal

to 32 and vertices count from 215 to 224 are used as input data.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

889

8

Fig. 4. Performance comparison of GPU Bellman-Ford algorithms versions,

RMAT graphs with 215 — 224 vertices.

Figure 4 demonstrates two important implementation properties. First, non-

optimized and optimized versions have similar behavior on graphs with size less

than 218, since on smaller sizes graphs corresponding to the distances array can be

fully placed into L2 cache of GPU. Second, the presented results demonstrate, that

data transfers between host and device indeed require a significant amount of time.

However, in other shortest paths problem variations (APSP, SPSP), data transfers will

be less important, since more computations will be performed after coping data into

device memory.

5.5 KNL implementation

First of all, it is important to decide which parallel technology should be used for

KNL implementations [9]. The two most widely-used technologies are openMP and

Intel TBB. Experimental results confirm that openMP technology is more suitable for

graph algorithms implementations, since it requires fewer overheads for threads crea-

tion and synchronizations.

Simple openMP implementation is universal, since it can be compiled and execut-

ed on both classic CPUs and on Intel Xeon co-processors. However, even for the

simplest version it is important to take into an account some KNL features, discussed

below.

First, the threads creation must be performed only once in the beginning of the al-

gorithm. Second, the number of synchronizations between threads should be mini-

mized, since those synchronizations are extremely expensive with a larger number of

parallel threads (60-70 for KNL). Last, it is important to select thread scheduler cor-

rectly between static, guided and dynamic thread scheduling policies. VTune Ampli-

fier analysis on figure 5, demonstrates the crucial difference between static and guid-

ed modes.

0

175

350

525

700

15 16 17 18 19 20 21 22 23 24

P
e
rf

o
m

a
n
c
e
 (

M
T

E
P

s
)

vertices degree (vertices count = 2^x)

1. basic version

2. fully optimised version (without memcpy time)

fully optimised version (memcpy time included)

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

890

9

Fig. 5. Threads occupation analysis for static (top) and guided (bottom) modes, red

color shows threads stall time.

In addition, Intel KNL has two types of memory: DDR4 and MCDRAM. The sim-

plest usage of high-performance MCDRAM memory is possible with the following

command: numactl -m 1 ./program_name, where 1 is the MCDRAM memory node

number. Also, hbwmalloc library can be used to allocate MCDRAM memory region

inside the program; it allows allocating only certain arrays in high-bandwidth

memory, if program memory requirements are larger than MCDRAM memory size. It

can be very useful for large-scale graph processing, where only the distances array

can be stored in MCDRAM memory, while edges arrays can be stored in usual DDR4

memory with larger size.

Fig. 6. Memory throughput usage analysis for different types of launches: program

launched on MCDRAM node (bottom) and DDR4 node (top)

As second optimization, a similar reordering of graph edges (discussed in section

5.4.2) was performed. Segment size was chosen equal to KNL L2 cache size, devided

on two (since L2 cache is shared by 2 cores in Tile).

The last important optimization was vectorization. An important feature of vectori-

zation is the possibility to manually load distance data into the cache using

_mm512_prefetch_i32extgather_ps instructions. As a result, vectorization allowed to

achieve in average 1.5 times acceleration, which can be observed on figure 7.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

891

10

Fig. 7. Performance comparison of KNL Bellman-Ford algorithm implementations

for KNL, RMAT graphs with 215 — 226 vertices.

5.6 GPU and KNL implementations comparison

Current section demonstrates general comparison of the two architectures in the con-

text of solving shortest paths problem. The two GPU implementations are presented:

with and without memory copies from host to device and back. For Intel KNL, the

most optimized version with vectorization is presented. All graphs used for testing

have RMAT and SSCA-2 structure and average connections count equal to 32.

Results from figure 8 demonstrate, that, first, KNL is able to process graphs with

larger size. GPU is limited with 12 GB device memory, which can only contain

graphs with 224 vertices and 229 edges. KNL processors can be equipped with up to

384 GB memory, which is able to contain graphs with up to 229 vertices and 234

edges.

Fig. 8. Performance of Bellman-Ford algorithm implementations for different ar-

chitectures. RMAT graphs with 215 — 226 vertices (left), SCCA-2 graphs with 218 —

226 vertices (right).

0

125

250

375

500

625

15 16 17 18 19 20 21 22 23 24 25 26

P
e
rf

o
m

a
n
c
e
 (

M
T

E
P

s
)

vertices degree (verices count = 2^x)

1. basic version
2. basic version with sorting
3. fully optimised version (sorting + optimisatins + vectorisation)

0

175

350

525

700

15 16 17 18 19 20 21 22 23 24 25 26

P
e

rf
o

m
a

n
c
e

 (
M

T
E

P
s
)

vertices degree (verices count = 2^x)

1. K40 GPU (no memcpy) 2. K40 GPU (with memcpy) 3. KNL

0

450

900

1350

1800

 18 19 20 21 22 23 24 25 26
vertices degree (verices count = 2^x)

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

892

11

Second, GPU has better performance on small-scale RMAT graphs, since it re-

quires less preprocessing before starting computations (no reallocation of aligned

arrays and faster threads creation), but on large-scale RMAT graphs KNL show high-

er performance. For SSCA-2 graphs performance behavior is different, because of

irregular size of those graphs cliques. As a result, the following conclusion can be

made: KNL has better performance for large-scale graphs of both types, and is also

capable of processing significantly larger graphs.

6 Strongly connected components

6.1 Mathematical description

A directed graph 𝐺 = (𝑉, 𝐸) with vertices 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑛) and edges 𝐸 =
(𝑒1, 𝑒2, … , 𝑒𝑚) is given. Edges may not have any data assigned (so graphs without

edges weights are discussed in the current section). A strongly connected component

(SCC) of a directed graph G is a strongly connected subgraph, which is maximal

within the following property: no additional vertices from G can be included in the

subgraph without breaking its property of being strongly connected.

6.2 Algorithm descriptions

Strongly connected components can be found with one of the following algorithms.

─ Tarjan's algorithm is based on a single depth first search (DFS) and uses 𝑂(|E|)

operations. Due to the fact that the algorithm is based on the DFS, only a sequen-

tial implementation is possible.

─ The DCSC algorithm (Divide and Conquer Strong Components), or FB (For-

ward-backward) is based on BFS and requires 𝑂(|V| ∗ log(|V|)) operations. This

algorithm is initially designed for parallel implementations: at each step it finds a

single strongly connected component and allocates up to three subgraph, each of

which may contain other strongly connected components, and, as a result, can be

processed in parallel.

─ Variations of the DCSC algorithm, such as Coloring and FB with step-trim.

These modified versions of the DCSC algorithm are described in detail in papers

[5] and [6].

6.3 Algorithm selection for target architectures

For obvious reasons, Tarjan's algorithm is not suitable for solving SCC problem on

parallel architectures, since it is based on a depth first search, as well as complex data

structures (stack and queue) processing, which can not be implemented efficiently on

GPUs.

 A large number of papers, such as [6], have already investigated different varia-

tion of DCSC algorithms, which can be more or less effective for different types of

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

893

12

graphs; paper [6] concludes that the forward-backward-trim algorithm is the most

efficient way to process RMAT graphs; the same was also proved during the current

research.

 The Forward-Backward-Trim algorithm is designed in the following way: in the

first step, the removal of the strongly connected components of size 1 is performed.

After that, on each step the algorithm finds one nontrivial strongly connected compo-

nent and allocates up to three subgraphs, each of which contains other components,

and, more important, can be processed in parallel. This step heavily relies on breadth-

first search to find all vertices, which can be reached from the selected pivot, and all

vertices, from which the current pivot vertex can be reached. Thus, this algorithm has

two levels of parallelism: “BFS level” and “parallel subgraphs handling level”, which

appears to be a big advantage for target parallel architectures.

6.4 GPU implementation

A forward-Backward-Trim algorithm is based on three important stages — a trim

step, a pivot selection and BFS in selected subgraphs. At the trim step the number of

edges, adjacent to each vertex (equal to number of incoming and out-coming edges),

is calculated, with a removal of vertices, which incoming or outgoing degrees are

equal to zero. Since the graph is stored in edges list format, these values can be com-

puted using new atomic operations, added in Kepler architecture. Random pivot selec-

tion can be implemented with a simple kernel, based on random nature of thread exe-

cution. Breadth-first search can be performed by the algorithm, similar to Bellman-

Ford shortest paths computations. The downward is that it has a higher computational

complexity, compared to the traditional BFS algorithm (using queues), but for RMAT

graphs the efficiency of proposed approach has already been demonstrated.

Since all steps can be implemented for a graph, which is stored in edges list format,

this format is selected again for graph storage. Since FB algorithm will be performing

BFS and trim steps both in original and transposed graphs, it is even more important

to sort graph edges using approach, already discussed in 5.4.2 section. Without edges

reordering, sub step performance (such as BFS) in transposed graph will be much

lower, compared to the performance in original graph.

There is another way how this problem can be avoided — with a pre-processing

transpose of the input graph before SCC operation (as proposed in [8]), but edges

reordering is proved to be much more efficient for two reasons. First, edges reorder-

ing can be performed much faster on parallel architectures (such as KNL), since it can

be based on parallel sorting algorithms, and does not require complex data structures

(like maps or dictionaries) to be supported. Second, proposed reordering is universal

for many different operations. For example, this reordering can be used to improve

performance for shortest paths, breadth-first search, bridges and transitive closure

computational problems. As a result, input graphs can be optimized right after genera-

tion, and stored in reordered intermediate representation to allow more efficient graph

processing in the future. Figure 11 in next section demonstrates computational time

difference between two approaches: when input graph is optimized and not.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

894

13

It is important to notice the percentage of time, required for trim and BFS steps.

Later it will be shown, that these values greatly differ for both architectures. For GPU

architecture and RMAT graphs this ratio is approximately equal to 6:10; the trim step

requires slightly less time, since atomic operations implementation in Kepler architec-

ture is very effective.

6.5 KNL implementation

First of all, it is important to study algorithms, implementing sub steps performance

separately for all steps: trim, BFS and pivot selection. Trim step on KNL is executed

in average 1.1-1.2x times slower, compared to GPU, since the openMP atomic opera-

tions appear to be less efficient compared to GPU ones. The breadth-first search, in

contrary, can be implemented much more efficiently on KNL, using vectorization and

similar to Bellman-Ford approach. Figure 9 demonstrate BFS-only step performance

for single graph traversal; for RMAT graphs trim/BFS ratio is almost 1:1 on KNL.

Fig. 9. Breadth-first search performance comparison for different architectures.

RMAT graphs with 218 — 225 vertices.

As shown in Figure 9, the Intel KNL BFS implementation has significantly better

performance on large-scale graphs, compared to GPU implementation

0

275

550

825

1100

 18 19 20 21 22 23 24 25 26 27

P
e
rf

o
m

a
n
c
e
 (

M
T

E
P

s
)

vertices degree (verices count = 2^x)

GPU (without memcpy time)
GPU (with memcpy time)
KNL

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

895

14

Fig. 10. Forward-Backward-Trim algorithm implementations performance for differ-

ent architectures: NVidia GPU (left) and Intel KNL (right). RMAT graphs with 218

— 225 vertices.

6.6 GPU and KNL implementations comparison

Similar to previously discussed shortest paths problem, SCC algorithm implementa-

tion for Intel KNL is also capable of processing larger graphs (up to 227) vertices.

Since strongly connected components problem doesn’t require edges weights stored,

this value is bigger, compared to shortest paths one (226). Inetl KNL also demon-

strates slightly better execution time, since its BFS implementation for RMAT graphs

demonstrates better performance.

Fig. 11. Forward-Backward-Trim algorithm implementations performance for differ-

ent architectures. RMAT graphs with 218 — 227 vertices.

0

37,5

75

112,5

150

187,5

 18 19 20 21 22 23 24 25 26 27

P
e

rf
o

m
a

n
c
e

 (
M

T
E

P
s
)

vertices degree (verices count = 2^x)

1. K40 GPU (no memcpy)

2. K40 GPU (with memcpy)

0

40

80

120

160

 18 19 20 21 22 23 24 25

P
e
rf

o
m

a
n
c
e
 (

M
T

E
P

s
)

vertices degree (verices count = 2^x)

1. K40 GPU (no edges reordering)

2. K40 GPU (edges reordering optimisation)

3. K40 (edges reordering + memcpy time)

0

40

80

120

160

 18 19 20 21 22 23 24 25

vertices degree (verices count = 2^x)

1. Intel KNL (no edges reordering)

2. Intel KNL (edges reordering optimisation)

3. Intel KNL (edgess reordering + vectorisation)

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

896

15

7 Conclusion

In the current paper, an implementation comparison of two important graph-

processing problems on modern high-performance architectures (NVidia GPU and

Intel KNL) has been discussed in details. Algorithms have been selected for both

architectures, based on algorithm properties and target architecture features. As a

result of many optimizations, high-performance and scalable parallel implementations

have been created; moreover, the implementations have been examined in details

using profiling utilities and theoretical research, which granted the ability to find po-

tential bottlenecks and significantly improve final performance.

The best performance was achieved by Intel KNL processor for both investigated

problems. Moreover, it was shown that Intel KNL is capable of processing much larg-

er graphs with up to 134 million vertices and 42 billion edges. On K40 GPU, the max-

imum processed graph consisted from 33 million vertices and 10 billion edges. It is

important, that Kepler architecture accelerators are currently outdated, while new

GPUs from Pascal generation can achieve higher performance.

The results were obtained in the Lomonosov Moscow State University with the fi-

nancial support of the Russian Science Foundation (agreement N 14-11-00190).

References

1. Pawan Harish and P. J. Narayanan. «Accelerating large graph algorithms on the GPU us-

ing CUDA». Center for Visual Information Technology, International Institute of Infor-

mation Technology Hyderabad, INDIA.

2. Gary J Katz1, «All-Pairs-Shortest-Paths for Large Graphs on the GPU». Joe Kider.

University of Pennsylvania.

3. Hector Ortega-Arranz, Yuri Torres, Diego R. Llanos, and Arturo Gonzalez-Escribano. «A

New GPU-based Approach to the Shortest Path Problem». Dept. Informa ́tica, Universidad

de Valladolid, Spain.

4. Tarjan, Robert Endre, and Uzi Vishkin. «An Efficient Parallel Biconnectivity Algorithm»

SIAM Journal on Computing 14, no. 4 (1985): 862–74.

5. Fleischer, Lisa K, Bruce Hendrickson, and Ali Pınar. «On Identifying Strongly Connected

Components in Parallel». In Lecture Notes in Computer Science, Volume 1800, Springer,

2000, pp. 505–11.

6. Jiri Barnat, Petr Bauch, Lubos Brim, Milan Ceska, « Computing Strongly Connected

Components in Parallel on CUDA», 2011, IPDPS '11 Proceedings of the 2011 IEEE Inter-

national Parallel & Distributed Processing Symposium.

7. A. Kolganov., Evaluating GPU performance on data-intense problems (translated from

Russian), Available online at http://agora.guru.ru/abrau2014/pdf/079.pdf

8. J. Barnat, P. Bauch. «Computing Strongly Connected Components in Parallel on CUDA».

Faculty of Informatics, Masaryk University, Botanicka ́ 68a, 60200 Brno, Czech Republic.

9. R. Florian, Choosing the right threading framework, 2013, Available online at:

https://software.intel.com/en-us/articles/choosing-the-right-threading-framework

10. Pore, A., «Parallel implementation of Dijkstra’s algorithm using MPI library on a cluster»,

Available online at: http://www.cse.buffalo.edu/faculty/miller/Courses/CSE633/Pore-

Spring-2014-CSE633.pdf

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

897

http://agora.guru.ru/abrau2014/pdf/079.pdf
https://software.intel.com/en-us/articles/choosing-the-right-threading-framework

