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Abstract. Solution of huge linear systems over large prime fields is a
problem that arises in such applications as discrete logarithm computa-
tion. Lanczos-Montgomery method is one of the methods to solve such
problems. Main parallel resource of the method us the size of the block.
But computational cost of dense matrix operations is increasing with
block size growth. Thus, parallel scaling is close to linear only while
complexity of such operations are relatively small. In this paper block
Lanczos-Montgomery method with dense matrix operations accelerated
on GPU is implemented. Scalability tests are performed (including tests
with multiple GPU per node) and compared to CPU only version.
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1 Introduction

The papers [1, 2] describe the block Lanczos method for solving huge sparse linear
systems over large prime finite fields that was developed in INM RAS. It was
shown that the parallel efficiency of this method is limited by the unscalability
of operations with the dense matrices and blocks. A qualitative explanation of
this property is not so difficult.

Let K be a block size. Assume that the number of independent computational
nodes is proportional to K. For the system size N the number of iterations does
not exceed % The complexity of operations with the dense K x K matrices and
N x K blocks is proportional to NK?2. This kind of operations is performed on
every iteration.

Thus, the following complexity estimate is valid:

N
{Time for dense operations} ~ ENKQ/K ~ N2 (1)
In spite of the fact that the calculations with dense matrices are usually ideally
parallelized, the complexity estimate is non-scalable by the number of nodes.

In practice, things are as follows. While the block size K is small, the com-
plexity of the dense block operations is hidden by the greater complexity of the
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huge sparse matrix by N x K block multiplications. Since the operation of sparse
matrix by block multiplication has a significant parallel resource, for the small
values of K the method has almost linear scalability [1,2]. However, the scala-
bility is close to linear only up to block sizes about 10 — 20, which corresponds
to the simultaneous use of up to 100 — 200 independent nodes [2]. The only
way to extend the linear scalability area of the parallel block Lanczos method is
reducing the time for the operations with the matrices and blocks.

In this paper we consider the use of GPUs to accelerate operations with
dense matrices and blocks with elements from a large finite field. The principal
possibility of significant acceleration of this kind of calculations using GPU was
proved in [2]. The considered case of the large block size K varying from 100 to
1000 is important from the theoretical point of view. In practice, however, such
block sizes are still very rare and purely exploratory in nature. At the same time,
blocks of small sizes K < 10, are generally used. It will be shown that even in
this case the use of GPUs allows to significantly speed up computations.

The paper describes the GPU implementations of two algorithms:

1. multiplication of "tall” N x K block by K x K matrix (section 2);
2. multiplication of K x N by N x K blocks (section 3).

From the mathematical point of view, we solve the problem of mapping an
algorithm onto non-trivial parallel computing systems. And while choosing an
algorithm the simplest one is preferable.

To reach high efficiency of GPU computations for our problem we must take
in account properties of arithmetic operations in large prime fields, especially the
multiplication of two field elements. Due to the design features of GPUs, their
maximum performance is achieved if there is no conditional branches in the
code. But the formal description of the multiplication and addition algorithms
in the large prime fields implies the use of conditional branching operators, for
example, in transfer bits [3]. The 3.3 section describes some of the techniques
that are used to exclude conditional branches. The corresponding part of software
implementation is written in Cuda PTX.

For more efficient use of GPUs computations are performed asynchroniously,
where possible. Also, support of multiple GPUs per node is implemented.

The numerical experiments (see section 4) were performed with and without
CUDA. To distinguish between the implementations the following notations are
used:

— the software without CUDA is denoted by PO;
— the software using single GPU per node is denoted by P1.
— the software using 2 GPUs per node is denoted by P2.
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2 Multiplication of dense N X K block by K X K matrix
for small K

2.1 General algorithm structure

Let A € FVXK be a block and B € FEX*X be a square matrix with elements in
a large prime field F. We assume that the elements of F are specified using W
computer words (in the experiments W = 8, and the size of the machine word is
64 bits), and that A, B, and the resulting block C' = AB are stored in the global
memory of the GPU.

The purpose of this section is to describe the effective implementation of the
nawe algorithm of multiplying A by B on GPUs.

As a rule, effective implementation on GPU implies a large number of inde-
pendent ezxecutable blocks. This is our immediate goal.

We represent the block A as a union of blocks A; € F64*K (see figure 1). Each
64 x K matrix block is associated with an independent executable 64-thread block
on GPU. Elements of A; are loaded into the shared memory by column vectors
of 64 elements; and from B just one element is loaded. The independent threads
multiply 64-column of A by the number from B, and the result is collected in a
column of C.

Now we give a detailed description of the N x K block by K x K matrix
multiplication algorithm.

Algorithm 1. N x K block by K x K matrix multiplication. ”Naive”
approach.

1. Loop over the block size;

2. Load a column of A and an element of B into the shared memory;

3. each of the 64 threads loads on the registers of its Stream processor (SP) the
following two F numbers: the number stored in the shared memory, and the
column element corresponding to the thread number;

4. each thread executes the multiplication of its pair, and adds it to the current
value of the result;

5. The Montgomery reduction is performed once at the end of all calculations.
The necessary constants are loaded from the constant memory.

2.2 Some details of block-by-matrix multiplication

In order to achieve the optimal performance, one should pay attention to (a)
the organization of data loading on the GPU registers; (b) the organization of
downloading from the registers into memory. The optimal loading from the global
memory is possible only if the loaded data is stored in 32-byte blocks. And the
efficiency of loading becomes higher if the neighboring threads of the same warp
use different memory banks. In other words, the numbers of machine words used
by warp should give the maximum possible number of different residues when
dividing by 32.
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Fig. 1. Representation of A for the executable blocks.

A similar observation is true for loading data from shared memory to the
registers. If the threads of one warp load either the same element, or elements
from different memory banks, the best results are obtained.

To make loads from global memory faster data matrices is stored columnwise.
Indeed, in this case each of 64 SP could load at once one of the consecutive 64
machine words. Thus, all threads in warp use different memory banks. After
performing such operation W times all needed 64 large numbers are stored in
shared memory.
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Another important detail is that pseudo-assembler has instructions for the
combined operations of increased accuracy. For example, madc.lo.cc adds the
lower word of the product of two numbers to the third number, taking into
account the transfer flag, and generates the transfer flag of the result. The use
of such instructions allows to avoid branching, and efficiently implement the
arithmetic in large prime fields on GPU.

Usage of multiple GPUs on such operation is straitforward — each GPU
stores and computes only part of block.

3 Multiplication of dense N X K blocks

3.1 General algorithm structure

In this section, multiplication of two dense N x K blocks with the resulting
square K X K matrix is considered. It will be shown that this operation is less
convenient for implementation on the GPU: it is difficult to create a large number
of independent blocks (if the block size is not large enough). Nevertheless, even
in this case (including K = 1), it is possible to obtain a significant acceleration.

Consider the product of two N x K blocks A and B. Assume that the blocks
are divided into sub-blocks (see figure 2). Namely, every column of size N is
considered as a union of r short vectors.

In calculating A” B, the corresponding short columns are multiplied by each
other, giving a number (element of F). Since in each case only one of r parts
of product is obtained, the calculations are not absolutely independent. After
obtaining the results for all pairs of corresponding short vectors, one requires
to make a reduction (sum of r numbers). In ideal case for binary tree reduction
r =2k

The choice of 7 affects the efficient use of GPU resources. At the beginning
one need to get a sufficiently large number of independent ezecutable blocks. The
high capacity of modern GPU means the simultaneous use of several tens of
thousands threads. Since the number of threads in our the executable block is
64, the number of independent executable blocks should be about 1000 (or even
higher). In our case it is easy to see, that

{Number of blocks} = K?r > 1000. (2)

Therefore, for K < 30 one should not split blocks into parts. Note that for
convenience, we choose the block size that is multiple of the number of threads
(64), that is:

N = 641K?r. (3)

with integer [ that defines the number of multiplications of long words computed
by each threads.
Note that the algorithm consists of three successive parts:

1. Each thread calculates the sum of [ products of long numbers, and the in-
complete Montgomery reduction (the result is the number of length W + 1

104



Cynepkomnviomepnule onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

Kx2% = 1000

Fig. 2. Division of independent blocks for calculation A™ B.

). The number obtained by each thread is written to its place in the global
memory.

2. Parallel binary tree reduction. Each computational block sums all the num-
bers necessary for the result. The resulting number (with in length W + 1)
is written to the global memory.

3. Finding the remainder of dividing each element by prime number of length
w.

The second part of the algorithm is standard; its implementation is known.
The third one is trivial. In addition, it is assumed that K < N, and therefore
the second and third parts have relatively low complexity. Thus, only the first
part is of interest.

Algorithm 2. Multiplication of N x K blocks.

1. In loop forl;

2. Loading the corresponding bits of the 64 x 1 wvectors of the blocks A and B
from the device memory into shared memory of the stream multiprocessor
(SM);

8. Each of the 64 threads loads two numbers into the registers of its stream
processor (SP);

4. Fach thread executes the multiplication of its pair, and adds it to the current
value of the result;

5. The incomplete Montgomery reduction is performed once at the end of all
calculations; the necessary constants are loaded from the constant memory.
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3.2 Some details of block-by-block multiplication

Our representation of the algorithm in several parts is not arbitrary. Formally,
the parts could be combined together. However, the combined algorithm would
consume a significant amount of multiprocessor resources, both registers and
shared memory. The competition for resources would lead to less efficiency of
large field numbers multiplication, while this operation brings the basic com-
plexity of the algorithm.

In addition, in the first computational part it is possible to limit the amount
of necessary shared memory by the price of additional synchronization. Namely,
one can use only the memory necessary for 64 numbers of W machine words.
That is, first a vector from A is loaded into the shared memory; then the required
number is loaded into the registers of each thread; and after that a vector from
B is loaded into the same place of the shared memory.

When multiple GPUs are available blocks are divided into corresponding
number of parts. Each GPU compute its own product. The result (which is
equal to sum of the results on all GPUs) is computed on CPU.

3.3 Some details of arithmetic operations in F

Commonly the descriptions of Montgomery reduction, and the reduction modulo
a prime number use conditional branches. As for GPUs, the conditions depending
on the processed data lead to execution of all paths of the branch by the warp.
This significantly reduces the performance of the device. In addition, processing
of the different paths of the branch requires additional registers. As a result,
fewer threads can created on the Stream multiprocessor, so data and instruction
loading is worse hidden. This leads to an additional decrease in performance.

Let us explain on an example how to get rid of branching in Montgomery
reduction. A typical case of branching here is the following:

if a>0b, then subtract b from a , else do not change a.

Now let’s perform the subtraction a — b with the transfer flag generating.
First we sum two zeros with the transfer flag, and set the result ¢ (so now ¢
contains the flag value). Then we add ¢ * b to a — b, getting the correct value of
a — b. Note that in multiplication ¢ by b, one may calculate just the lower word
of the products.

4 Numerical experiments

Before describing the numerical experiments, let’s focus on the properties of the
block Lanczos method implementation, created in the INM RAS. Namely, the
implementations have two main parallel resources.

First one is the efficient parallel procedure for sparse matrix by vector mul-
tiplication [6]. The matrix is split into blocks, which are processed in parallel.
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However, this parallelism is limited. For example, the time for data exchanges
increases as the node number grows.

The second parallelism resource is connected with the block size K (note that
the known implementations [4, 5] do not have it). The independent computations
are executed for each individual vector in the block. In [1] an implementation
proposed such that increasing K leads to the decrease of data exchanging time
proportional to K. Thus, the block size is not only an independent parallel
resource, but also expands the parallelism of sparse matrix by vector multipli-
cation. Increasing K is restricted by the growth of algorithmic complexity for
operations with dense matrices and blocks at each iteration. It means that ac-
celeration of block operations is a priority task for the most efficient parallel
implementation.

We used the following two matrices for the numerical experiments:

1. Matrix 1 (M1): (a) size 64446 x 65541; (b) number of nonzeros 1588524; (c)
average number of nonzeros in a row p = 24.65; (d) 5 dense blocks.

2. Matrix 2 (M2): (a) size 2097152x2085659; (b) number of nonzeros 182117529;
(c) average number of nonzeros in a row p = 86.84; (d) 5 dense blocks.

Numerical experiments were performed on the following computer systems:

1. GPU cluster of INM RAS (T): each node is equipped with 4-core processor
Intel Core i7-960 3,2 GHz and 2 graphical adapters Nvidia Tesla C2070. The
nodes are interconnected with Infiniband 10 Gbit/s.

2. Supercomputer ”Lomonosov” (L): each node is equipped with two 8-cores
processors Intel Xeon X5570 2,93 GHz. Some nodes in addition are equipped
with graphical adapters Nvidia Tesla X2070. The nodes are interconnected
with Infiniband 40 Gbit/s.

3. Supercomputer ”Lomonosov-2” (L2): each node is equipped 14-cores pro-
cessors Intel Xeon E5-2697v3 2,6 GHz and with graphical adapter Nvidia
Tesla K40M. The nodes are interconnected with Infiniband 56 Gbit/s.

The resuplts are shown in the tables 5, 6, 1, 2, 3, 4.

Table 1 gives the time required to compute one vector of A-orthogonal basis
of the Krylov space on cluster L. The first column of table indicates the number
of nodes. As we see, implementation P1 with CUDA allows block size increasing
easier than implementation P0O. Thus, the parallel resource associated with the
procedure for multiplying extra-large sparse matrix by vector is preserved and
can be exploited later. Thus, the almost linear scalability of P1 persists wider.
This conclusion is vividly confirmed in Table 2. Indeed, the results for P1 show
better acceleration relative to the calculations on one node. That is, P1 has
better parallel properties.

Similar results are obtained for the cluster L2. Finally, we note that the
difference in the results of PO and P1 becomes more and more evident with the
growth of K.

On cluster T results shows effect of multiple GPU usage. For cluster with
more nodes available impact of multiple GPU usage is expected to be much more
significant and to allow close to linear parallel scaling for larger K.
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Table 1. Cluster L. Time spent to calculate one vector of Krylov subspace. The optimal
block size K is in brackets.

Nodes \Prog.|P0, M1, ms|P1, M1, ms|P0, M2, s|P1, M2, s
1 56.9 (1) 411 (1) | 3.81 (1) | 3.10 (1)
2 202 (1) 215 (2) | 2.07 (1) | 1.61(2)
1 21.8 (1) 1.2 (4) | 1.14 (1) | 0.815 (4)
8 13.8 (2) 6.9 (8) | 0.700 (1) | 0.417 (8)
16 8.0 (4) 43 (16) | 0.401 (4) |0.231 (16)
32 - - 0.216 (3) |0.128 (32)

Table 2. Cluster L. Acceleration compared to one node

Nodes \Prog.[P0, M1[P1, M1|P0, M2[P1, M2
1 1 1 1 1
2 195 | 191 | 184 | 1.03
1 261 | 3.67 | 334 | 3.80
8 112 | 596 | 537 | 7.43
16 711 | 9.56 95 | 13.42
32 - - 17.64 | 24.22

Table 3. Cluster L2. Time spent to calculate one vector of Krylov subspace. The block
size K is in brackets.

Nodes \Prog.|P0, M1, ms|/P1, M1, ms/P0, M2, s|P1, M2, s
1 383 (1) | 294 (1) | 1.66 (1) | 141 (1)
2 26.1 (1) 192 (2) | 0.87 (1) | 0.725 (2)
1 15.8 (1) 9.4 (4) | 0500 (1) | 0.381 (4)
8 9.9 (1) 58 (3) | 0.314 (2) | 0.202 (8)
16 7.3 (1) 40 (16) | 0.193 (4) | 0.119 (16)
32 65 (2) 2.8 (16) | 0.116 (3) |0.0698 (32)
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Table 4. Cluster L2. Acceleration compared to one node

Nodes \Prog.|P0, M1/P1, M1|P0, M2P1, M2
1 1 1 1 1
2 1.47 1.53 1.91 1.95
4 2.42 3.13 3.32 3.70
8 3.87 5.07 5.29 6.98
16 5.25 7.35 8.6 11.85
32 5.89 10.5 14.31 20.2

Table 5. Cluster T. Time spent to calculate one vector of Krylov subspace. The block
size K is in brackets.

Nodes \Prog.|P0, M1, ms|P1, M1, ms/P2, M1, ms|P0, M2, s|P1, M2, s|P2, M2, s
1 87.9 (1) 52.2 (1) 49.8 (1) 5.91 (1) 4.7 (1) 4.65 (1)
50.5 (1) 29.9 (2) 28.2 (2) 3.19 (1) 2.48 (2) 2.43 (2)
4 31.1 (1) 16.8 (4) 15.3 (4) 1.79 (2) 1.28 (4) 1.25 (4)

Table 6. Cluster T. Acceleration compared to one node.

Nodes \Prog.|P0, M1|P1, M1|P2, M1(P0, M2|P1, M2|P2, M2
2 1.74 1.75 1.77 1.85 1.90 1.91
4 2.82 3.11 3.25 3.30 3.67 3.72
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