
Dependable and Coordinated Resources Allocation
Algorithms for Distributed Computing

Victor Toporkov (�) and Dmitry Yemelyanov

National Research University “MPEI”, Moscow, Russia
{ToporkovVV, YemelyanovDM}@mpei.ru

Abstract. In this work, we introduce slot selection and co-allocation algorithms
for parallel jobs in distributed computing with non-dedicated and heterogeneous
resources. A single slot is a time span that can be assigned to a task, which is a
part of a parallel job. The job launch requires a co-allocation of a specified
number of slots starting and finishing synchronously. Some existing resource
co-allocation algorithms assign a job to the first set of slots matching the re-
source request without any optimization (the first fit type), while other algo-
rithms are based on an exhaustive search. In this paper, algorithms for efficient,
dependable and coordinated slot selection are studied and compared with
known approaches. The novelty of the proposed approach is in a general algo-
rithm efficiently selecting a set of slots according to the specified criterion.

Keywords: Distributed Computing · Grid · Dependability · Coordinated Sche-
duling · Resource Management · Slot · Job · Allocation · Optimization

1 Introduction

Modern high-performance distributed computing systems (HPCS), including Grid,
cloud and hybrid infrastructures provide access to large amounts of resources [1, 2].
These resources are typically required to execute parallel jobs submitted by HPCS
users and include computing nodes, data storages, network channels, software, etc.
These resources are usually partly utilized or reserved by high-priority jobs and jobs
coming from the resource owners. Thus, the available resources are represented with
a set of time intervals (slots) during which the individual computational nodes are
capable to execute parts of independent users’ parallel jobs. These slots generally
have different start and finish times and vary in performance level. The presence of a
set of heterogeneous slots impedes the problem of resources allocation necessary to
execute the job flow from HPCS users. Resource fragmentation also results in a de-
crease of the total computing environment utilization level [1, 2].

There are different approaches for a job-flow scheduling problem in distributed
computing environments. Multi-agent application level scheduling [3] actually per-
forms individual jobs execution optimization and, as a rule, does not imply any global
resource sharing or allocation policy. Such approach with an unrestricted competition

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

137

2

for the available computing resources may result in an inefficient and unbalanced
resources usage and hence poor overall job-flow execution efficiency.

Job flow scheduling in virtual organizations (VO) [4, 5] suggests uniform rules of
resource sharing and consumption, in particular based on economic models. This
approach allows improving the job-flow level scheduling and resource distribution
efficiency. VO formation and performance largely depends on mutually beneficial
collaboration between all the related stakeholders. However, users’ preferences and
owners’ and administrators’ preferences may conflict with each other. Users are likely
to be interested in the fastest possible running time for their jobs with least possible
costs whereas VO preferences are usually tuned for available resources load balancing
or node owners’ profit boosting. Thus, VO policies in general should respect all
members and the most important aspect of rules suggested by VO is their fairness. At
the same time VO scheduling policies usually limit individual jobs optimization op-
portunities, may violate queue order and possess disadvantages common for centra-
lized scheduling structures [6]. In order to implement any of the described job-flow
scheduling schemes and policies, first, one needs an algorithm for selecting sets of
simultaneously available slots required for each job execution. Further, we shall call
such set of simultaneously available slots with the same start and finish times as ex-
ecution window.

In this paper, we study algorithms for optimal or near-optimal heterogeneous re-
sources selection by a given criterion with the restriction to a total cost. Additionally
we consider practical implementations for a dependable resources allocation problem.

The rest of the paper is organized as follows. Section 2 presents related works. Sec-
tion 3 introduces a general scheme for searching slot sets efficient by the specified
criterion. Then several implementations are proposed and considered. Section 4 con-
tains simulation results for comparison of proposed and known algorithms. Section 5
summarizes the paper and describes further research topics.

2 Related Works

The scheduling problem in Grid is NP-hard due to its combinatorial nature and many
heuristic-based solutions have been proposed. In [7] heuristic algorithms for slot se-
lection, based on user-defined utility functions, are introduced. NWIRE system [7]
performs a slot window allocation based on the user defined efficiency criterion under
the maximum total execution cost constraint. However, the optimization occurs only
on the stage of the best found offer selection. First fit slot selection algorithms (back-
track [8] and NorduGrid [9] approaches) assign any job to the first set of slots match-
ing the resource request conditions, while other algorithms use an exhaustive search
[10-12] and some of them are based on a linear integer programming (IP) [10] or
mixed-integer programming (MIP) model [11]. Moab scheduler [13] implements the
backfilling algorithm and during a slot window search does not take into account any
additive constraints such as the minimum required storage volume or the maximum
allowed total allocation cost.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

138

3

Modern distributed and cloud computing simulators GridSim and CloudSim [14,
15] provide tools for jobs execution and co-allocation of simultaneously available
computing resources. Base simulator distributions perform First Fit allocation algo-
rithms without any specific optimization. CloudAuction extension [15] of CloudSim
implements a double auction to distribute datacenters’ resources between a job flow
with a fair allocation policy. All these algorithms consider price constraints on indi-
vidual nodes and not on a total window allocation cost. However, as we showed in
[16], algorithms with a total cost constraint are able to perform the search among a
wider set of resources and increase the overall scheduling efficiency.

GrAS [17] is a Grid job-flow management system built over Maui scheduler [13].
The resources co-allocation algorithm retrieves a set of simultaneously available slots
with the same start and finish times even in heterogeneous environments. However,
the algorithm stops after finding the first suitable window and, thus, doesn’t perform
any optimization except for window start time minimization.

Algorithm [18] performs job’s response and finish time minimization and doesn’t
take into account constraint on a total allocation budget. [19] performs window search
on a list of slots sorted by their start time, implements algorithms for window shifting
and finish time minimization, doesn’t support other optimization criteria and the
overall job execution cost constraint.

AEP algorithm [20] performs window search with constraint on a total resources
allocation cost, implements optimization according to a number of criteria, but
doesn’t support a general case optimization. Besides AEP doesn’t guarantee same
finish time for the window slots in heterogeneous environments and, thus, has limited
practical applicability.

Main contribution of this paper is a window co-allocation algorithm performing re-
sources selection according to the user requirements and restrictions. The novelty of
the proposed approach consists in implementing a dynamic programming scheme in
order to optimize heterogeneous resources selection according to the scheduling poli-
cy.

3 Resource Selection Algorithm

3.1 General Problem Statement

We consider a set � of heterogeneous computing nodes with different performance ��
and price �� characteristics. Each node has a local utilization schedule known in ad-
vance for a considered scheduling horizon time �. A node may be turned off or on by
the provider, transferred to a maintenance state, reserved to perform computational
jobs. Thus, it’s convenient to represent all available resources as a set of slots. Each
slot corresponds to one computing node on which it’s allocated and may be characte-
rized by its performance and price.

In order to execute a parallel job one needs to allocate the specified number of si-
multaneously idle nodes ensuring user requirements from the resource request. The
resource request specifies number � of nodes required simultaneously, their minimum
applicable performance �, job’s computational volume � and a maximum available

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

139

4

resources allocation budget �. The required window length is defined based on a slot
with the minimum performance. For example, if a window consists of slots with per-
formances � 	
�� , ��
 and �� � ��, then we need to allocate all the slots for a time

� � �

��
. In this way � really defines a computational volume for each single job sub-

task. Common start and finish times ensure the possibility of inter-node communica-
tions during the whole job execution. The total cost of a window allocation is then
calculated as �� � ∑ � � ��

�
��� .

These parameters constitute a formal generalization for resource requests common
among distributed computing systems and simulators. The overall problem statement
lacks specific features of internal nodes processing as well as network communication
aspects that are important for a job execution performance in data-intensive HPC
systems. However, the problem remains independent from specific HPCS configura-
tions and, thus, the problem solutions may be evaluated against general case criteria.
For this purpose we introduce criterion � representing a user preference for the par-
ticular job execution during the scheduling horizon �. � can take a form of any addi-
tive function and as an example, one may want to allocate suitable resources with the
maximum possible total data storage available before the specified deadline.

3.2 General Window Search Procedure

For a general window search procedure for the problem statement presented in Sec-
tion 3.1, we combined core ideas and solutions from algorithm AEP [20] and systems
[17, 19]. Both related algorithms perform window search procedure based on a list of
slots retrieved from a heterogeneous computing environment.

Following is the general square window search algorithm. It allocates a set of �

simultaneously available slots with performance �� � �, for a time, required to com-
pute � instructions on each node, with a restriction � on a total allocation cost and
performs optimization according to criterion �. It takes a list of available slots ordered
by their non-decreasing start time as input.

1. Initializing variables for the best criterion value and corresponding best window:
���� � 0, !��� �

.

2. From the slots available we select different groups by node performance ��. For
example, group "# contains resources allocated on nodes with performance
�� $ "# . Thus, one slot may be included in several groups.

3. Next is a cycle for all retrieved groups "� starting from the max performance "���.
All the sub-items represent a cycle body.
a. The resources reservation time required to compute � instructions on a node

with performance "� is �� � �

��
.

b. Initializing variable for a window candidates list %� �

.
c. Next is a cycle for all slots &� in group "� starting from the slot with the mini-

mum start time. The slots of group "� should be ordered by their non-decreasing
start time. All the sub-items represent a cycle body.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

140

5

(1) If slot &� doesn’t satisfy user requirements (hardware, software, etc.) then
continue to the next slot (3c).

(2) If slot length '(&�) � �� then continue to the next slot (3c).
(3) Set the new window start time *� . &,-., � &� . &,-.,.
(4) Add slot &� to the current window slot list %�
(5) Next a cycle to check all slots &� inside %�

i. If there are no slots in %� with performance "(&�)= "� then continue to
the next slot (3c), as current slots combination in %� was already consi-
dered for previous group "�/�.

ii. If *� . &,-., 0 �� � &� . 1�2 then remove slot &� from %� as it can’t con-
sist in a window with the new start time *� . &,-.,.

(6) If %� size is greater or equal to �, then allocate from %� a window *� (a
subset of � slots with start time *� . &,-., and length ��) with a maximum
criterion value �� and a total cost �� � �. If �� � ���� then reassign
���� � �� and *��� � *�.

4. End of algorithm. At the output variable *��� contains the resulting window with
the maximum criterion value ����.

3.3 Optimal Slot Subset Allocation

Let us discuss in more details the procedure which allocates an optimal (according to
a criterion �) subset of � slots out of %� list (algorithm step 3c(6)). For some particu-
lar criterion function � a straightforward subset allocation solution may be offered.
For example for a window finish time minimization it is reasonable to return at step
3c(6) the first � cheapest slots of %� provided that they satisfy the restriction on the
total cost. These � slots will provide *� . �3�3&4 � *� . &,-., 0 ��, so we need to set
�� � 5(*� . &,-., 0 ��) to minimize the finish time at the end of the algorithm.

However in a general case we should consider a subset allocation problem with
some additive criterion: 6 � ∑ �7

�
��� (&�), where �7(&�) � 8� is a target optimization

characteristic value provided by a single slot &� of *�. In this way we can state the
following problem of an optimal � - size window subset allocation out of m slots
stored in %�:

 6 � 9�8� 0 9:8: 0 ; 0 9�8�, (1)

with the following restrictions:
9��� 0 9:�: 0 ; 0 9��� < �,

9� 0 9: 0 ; 0 9� � �,
9� 	
0,1
, 3 � 1. . >,

where 8� is a target characteristic value provided by slot &�, �� is total cost required to
allocate slot &� for a time ��, 9� - is a decision variable determining whether to allocate
slot &� (9� � 1) or not (9� � 0) for the current window.

This problem relates to the class of integer linear programming problems and we
used 0-1 knapsack problem as a base for our implementation. The classical 0-1 knap-
sack problem with a total weight � and items-slots with weights �� and values 8� have

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

141

6

the same formal model (1) except for extra restriction on the number of items re-
quired: 9� 0 9: 0 ; 0 9� � �. To take this into account we implemented the follow-
ing dynamic programming recurrent scheme:

 ��?�� , �#@ � max
��/�(�� , �#), ��/�(�� 5 �� , �# 5 1) 0 8�
, (2)

3 � 1, . . , >, �� � 1, . . , �, �# � 1, . . , �,
where ��?��, �#@ defines the maximum 6 criterion value for �#-size window allocated
out of first 3 slots from %� for a budget ��. After the forward induction procedure (2)
is finished the maximum value 6��� � ��(�, �). 9� values are then obtained by a
backward induction procedure.

For the actual implementation we initialized ��?��, 0@ � 0, meaning 6 � 0 when
we have no items in the knapsack. Then we perform forward propagation and calcu-
late ��?��, �#@ values for all �� and �# based on the first item and the initialized val-
ues. Then �:?�� , �#@ is calculated taking into account second item and ��?��, �#@ and
so on. So after the forward propagation procedure (2) is finished the maximum value
6��� � ��(�, �). Corresponding values for variables 9� are then obtained by a back-
ward propagation procedure.

An estimated computational complexity of the presented recurrent scheme is
D(> � � � �), which is � times harder compared to the original knapsack problem
(D(> � �)). On the one hand, in practical job resources allocation cases this overhead
doesn’t look very large as we may assume that � �� > and � �� �. On the other
hand, this subset allocation procedure (2) may be called multiple times during the
general square window search algorithm (step 3c(6)).

3.4 Dependable and Coordinated Resources Allocation

As a practical implementation for a general optimization scheme we propose to study
a resources allocation placement problem. Fig. 1 shows Gantt chart of 4 slots co-
allocation (hollow rectangles) in a computing environment with resources pre-utilized
with local and high-priority tasks (filled rectangles).

Fig. 1. Dependable window co-allocation metrics.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

142

7

As can be seen from Fig. 1, even using the same computing nodes (1, 3, 4, 5 on
Fig. 1) there are usually multiple window placement options with respect to the slots
start time. The window placement generally may affect such job execution properties
as cost, finish time, computing energy efficiency, etc. Besides, slots proximity to
neighboring tasks reserved on the same computing nodes may affect a probability of
the job execution delay or failure. For example, a slot reserved too close to the pre-
vious task on the same node may be delayed or cancelled by an unexpected delay of
the latter. Thus, dependable resources allocation may require reserving resources with
some reasonable distance to the neighboring tasks.

As presented in Fig. 1, for each window slot we can estimate times to the previous
task finish time: �EFGH and to the next task start time: �I�JKH. Using these values the
following criterion for the window allocation represents average time distance to the

nearest neighboring tasks: �LMN O � �

�
∑ >3�(�EFGH �, �I�JKH �)�

��� , where � is a total

number of slots in the window. So when implementing a dependable job scheduling
policy we are interested in maximizing �LMN O value.

On the other hand such selfish and individual job-centric resources allocation poli-
cy may result in an additional resources fragmentation and, hence, inefficient re-
sources usage. Indeed, when �LMN O is maximized the jobs will try to start at the max-
imum distance from each other, eventually leaving truncated slots between them.
Thus, the subsequent jobs may be delayed in the queue due to insufficient remaining
resources.

For a coordinated job-flow scheduling and resources load balancing we propose
the following window allocation criterion representing average time distance to the

farthest neighboring tasks: �LPQ O � �

�
∑ >-9(�EFGH � , �I�JKH �)�

��� , where � is a total

number of slots in the window. By minimizing �LPQ O our motivation is to find a set
of available resources best suited for the particular job configuration and duration.
This coordinated approach opposes selfish resources allocation and is more relevant
for a virtual organization job-flow scheduling procedure.

4 Simulation Study

4.1 Simulation Environment Setup

An experiment was prepared as follows using a custom distributed environment simu-
lator [2, 16, 20]. For our purpose, it implements a heterogeneous resource domain
model: nodes have different usage costs and performance levels. A space-shared re-
sources allocation policy simulates a local queuing system (like in GridSim or Cloud-
Sim [14]) and, thus, each node can process only one task at any given simulation
time. The execution cost of each task depends on its execution time, which is propor-
tional to the dedicated node’s performance level. The execution of a single job re-
quires parallel execution of all its tasks.

During the experiment series we performed a window search operation for a job
requesting � � 7 nodes with performance level �� $ 1, computational volume
� � 800 and a maximum budget allowed is � � 644. During each experiment a

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

143

8

new instance for the computing environment was automatically generated with the
following properties. The resource pool includes 100 heterogeneous computational
nodes. Each node performance level is given as a uniformly distributed random value
in the interval [2, 10]. So the required window length may vary from 400 to 80 time
units. The scheduling interval length is 1200 time quanta which is enough to run the
job on nodes with the minimum performance. However, we introduce the initial re-
source load with advanced reservations and local jobs to complicate conditions for the
search operation. This additional load is distributed hyper-geometrically and results in
up to 30% utilization for each node (Fig. 2).

Fig. 2. Initial resources utilization example.

Additionally an independent value V� 	 W0; 10Y is randomly generated for each
computing node 3 to compare algorithms against Z � ∑ V�

�
��� window allocation

criterion.

4.2 General Algorithms Comparison

Firstly we intend to study the proposed resources allocation algorithm against an
abstract general-case criterion Z. For this purpose we implemented the following
window search algorithms based on the general window search procedure introduced
in Section 3.2.

• FirstFit performs a square window allocation in accordance with a general scheme
described in Section 3.2. Returns first suitable and affordable window found. In
fact, performs window start time minimization and represents algorithm from [17,
19].

• MultipleBest algorithm searches for multiple non-intersecting alternative windows
using FirstFit algorithm. When all possible window allocations are retrieved the
algorithm searches among them for alternatives with the maximum Q value. In this
way MultipleBest is similar to [7] approach.

• MaxQ implements a general square window search procedure with an optimal slots
subset allocation (2) to return a window with maximum total Q value.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

144

9

• MaxQ Lite follows the general square window search procedure but doesn’t im-
plement slots subset allocation (2) procedure. Instead at step 3c(6) it returns the
first � cheapest slots of %�. The total Q value of these � slots is returned as a target
criterion, which is then maximized during the search procedure. Thus, MaxQ Lite
has much less computational complexity compared to MaxQ but doesn’t guarantee
an accurate solution [20].

Fig. 3. Simulation results: average window Q value.

Fig. 3 shows average Z � ∑ V�
�
��� value obtained during the simulation. Parame-

ter V� was generated randomly on a [0; 10] interval and is independent from other
node’s characteristics. Thus, for a single window of 7 slots we have the following
practical limits specific for our experiment: Z 	 W0; 70Y.

As can be seen from Fig. 3, MaxQ is indeed provided the maximum average crite-
rion value Z � 61.8, which is quite close to the practical maximum, especially com-
pared to other algorithms. The advantage over MultipleBest and MaxQ Lite is almost
20%. MaxQ Lite implements a simple heuristic but still is able to provide a better
solution compared to the best of 50 different alternative executions retrieved by Mul-
tipleBest. First Fit provided average Z value exactly in the middle of [0; 70] which is
44% less compared to MaxQ.

4.3 Dependable Resources Allocation

For the window placement problem along with FirstFit and MultipleBest we intro-
duce two pairs of algorithms based on MaxQ and MaxQ Lite approaches.

• Dependable (DEP) and DEP Lite perform �LMN O maximization, i.e. maxim-
ize the distance to the nearest running or reserved tasks.

• Coordinated (COORD) and COORD Lite minimize �LPQ O : average distance
to the farthest neighboring tasks.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

145

10

So, by setting �LMN O and �LPQ O as target optimization criteria we performed sche-
duling simulation with the same settings described in Section 4.1. The results of 2000
independent scheduling cycles are compiled in Table 1.

As expected DEP provided maximum average distances to the adjacent tasks: 369
and 480 time units, which is comparable to the job’s execution duration. An example
of such allocation from a single simulation experiment is presented on Fig. 4 (a). The
resulting DEP �LMN O distance value is 4.3 times longer compared to FirstFit and al-
most 1.5 longer compared to MultipleBest.

Table 1. Window placement simulation results

Algorithm
Distance to the

nearest task

�LMN O

Distance to the

farthest task

�LPQ O

Average

Operational Time, ms

Multiple Best 253 159 103

First Fit 85 342 4.2

DEP 369 480 1695

DEP Lite 275 440 4.5

COORD 9 52 1694

COORD Lite 31 148 4.5

Similarly, COORD provided minimum values for the considered criteria: 9 and 52

time units. Example allocation is presented on Fig. 4 (b) where left edge represents
the scheduling interval start time. As can be seen from the figure the allocated slots
are highly coincident with the job’s configuration and duration. Here the resulting
average distance to the farthest task is three times smaller compared to MultipleBest
and 9 times smaller when compared with DEP solution.

(a) (b)

Fig. 4. Simulation examples for dependable (a) and coordinated (b) resources allocation for the
same job.

However due to a higher computational complexity it took DEP and COORD al-
most 1.7 seconds to find the 7-slots allocation over 100 available computing nodes,

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

146

11

which is 17 times longer compared to Multiple Best. At the same time simplified Lite
implementations provided better scheduling results compared to Multiple Best for
even less operational time: 4.5ms. FirstFit doesn’t perform any target criteria optimi-
zation and, thus, provides average �LMN O and �LPQ O distances with the same opera-
tional time as Lite algorithms.

MultipleBest in Table 1 has average distance to the farthest task smaller than to the
nearest task because different alternatives were selected to match the criteria: �LMN O
maximization and �LPQ O minimization. Totally almost 50 different resource alloca-
tion alternatives were retrieved and considered by MultipleBest during each experi-
ment.

5 Conclusion and Future Work

In this work, we address the problems of dependable and coordinated slot selection
and co-allocation for parallel jobs in distributed computing with non-dedicated re-
sources. For this purpose a general window allocation algorithm was proposed along
with two practical implementations: for dependable and coordinated resources alloca-
tion policies.

A simulation study was carried out to prove the algorithm’s optimization efficiency
according to the target criteria. As a result, the advantage of the proposed general
scheme over traditional scheduling algorithms reaches 20% against an abstract gener-
al case criterion and more than 50% when we consider window placement problem.

As a drawback, the general case algorithm has a relatively high computational
complexity, especially compared to First Fit approach. In our further work, we will
refine a general resource co-allocation scheme in order to decrease its computational
complexity.

Acknowledgments. This work was partially supported by the Council on Grants of
the President of the Russian Federation for State Support of Young Scientists (YPhD-
2297.2017.9), RFBR (grants 18-07-00456 and 18-07-00534) and by the Ministry on
Education and Science of the Russian Federation (project no. 2.9606.2017/8.9).

References

1. Dimitriadou, S.K., Karatza, H.D.: Job Scheduling in a Distributed System Using Backfil-
ling with Inaccurate Runtime Computations. In: Proc. 2010 International Conference on
Complex, Intelligent and Software Intensive Systems, pp. 329-336 (2010)

2. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin P.: Heuristic
Strategies for Preference-based Scheduling in Virtual Organizations of Utility Grids. J.
Ambient Intelligence and Humanized Computing 6 (6), 733–740 (2015)

3. Buyya, R., Abramson, D., Giddy, J.: Economic Models for Resource Management and
Scheduling in Grid Computing. J. of Concurrency and Computation: Practice and Expe-
rience 5 (14), 1507-1542 (2002)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

147

12

4. Foster, I., Kesselman C., Tuecke S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. J. of High Performance Computing Applications 15 (3), pp. 200-222
(2001)

5. Carroll, T., Grosu, D.: Formation of Virtual Organizations in Grids: A Game-Theoretic
Approach. Economic Models and Algorithms for Distributed Systems 22 (14), 63-81
(2009)

6. Yang, R., Xu, J.: Computing at massive scale: Scalability and dependability challenges.
Service-Oriented System Engineering (SOSE), 2016 IEEE Symposium on, pp. 386-397
(2016)

7. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Computing.
In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537,
pp. 128-152. Springer, Heidelberg (2002)

8. Aida, K., Casanova, H.: Scheduling Mixed-parallel Applications with Advance Reserva-
tions. In: 17th IEEE Int. Symposium on HPDC, pp. 65-74. IEEE CS Press, New York
(2008)

9. Elmroth, E., Tordsson J.: A Standards-based Grid Resource Brokering ServiceSupporting
Advance Reservations, Co-allocation and Cross-Grid Interoperability. J. of Concurrency
and Computation: Practice and Experience 25 (18), 2298-2335 (2009)

10. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An Advance Reservation-basedCo-
allocation Algorithm for Distributed Computers and Network Bandwidth on QoS-
guaranteed Grids. In: Frachtenberg E., Schwiegelshohn U. (eds.) JSSPP 2010. LNCS, vol.
6253, pp. 16-34. Springer, Heidelberg (2010)

11. Blanco, H., Guirado, F., Lrida, J.L., Albornoz, V.M.: MIP Model Scheduling for Multi-
clusters. In: Euro-Par 2012. LNCS, vol. 7640, pp. 196-206. Springer, Heidelberg (2013)

12. Garg, S.K., Konugurthi, P., Buyya, R.: A Linear Programming-driven Genetic Algorithm
for Meta-scheduling on Utility Grids. Int. J. of Parallel, Emergent and Distributed Systems
26, 493-517 (2011)

13. Moab Adaptive Computing, http://www.adaptivecomputing.com, last accessed 2018/04/12
14. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya,R.: CloudSim:

A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation
of Resource Provisioning Algorithms. J. Software: Practice and Experience 41 (1), 23-50
(2011)

15. Samimi, P., Teimouri, Y., Mukhtar M.: A combinatorial double auction resource allocation
model in cloud computing. J. Information Sciences 357 (C), 201-216 (2016)

16. Toporkov, V., Toporkova, A., Bobchenkov, A., Yemelyanov, D.: Resource Selection Al-
gorithms for Economic Scheduling in Distributed Systems. In: Proc. International Confe-
rence on Computational Science, ICCS 2011, June 1-3, 2011, Singapore, Procedia Com-
puter Science. Elsevier, vol. 4. pp. 2267-2276 (2011)

17. Kovalenko, V.N., Koryagin, D.A.: The grid: Analysis of basic principles and ways of ap-
plication. J. Programming and Computer Software 35(1), 18-34 (2009)

18. Makhlouf, S., Yagoubi, B.: Resources Co-allocation Strategies in Grid Computing. In:
CIIA, vol. 825, CEUR Workshop Proceedings, 2011.

19. Netto, M. A. S., Buyya, R.: A Flexible Resource Co-Allocation Model based on Advance
Reservations with Rescheduling Support. In: Technical Report, GRIDSTR-2007-17, Grid
Computing and Distributed Systems Laboratory, The University of Melbourne, Australia,
October 9, 2007.

20. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot Selection Algorithms
in Distributed Computing. Journal of Supercomputing 69 (1), 53-60 (2014)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

148

