Cynepxomnviomepnuie onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

Dependable and Coordinated Resources Allocation
Algorithms for Distributed Computing

Victor Toporkov=2 and Dmitry Yemelyanov

National Research University “MPEI”, Moscow, Russia
{Topor kovVWV, Yenel yanovDM @rpei.ru

Abstract. In this work, we introduce slot selection and doadtion algorithms
for parallel jobs in distributed computing with ndedicated and heterogeneous
resources. A single slot is a time span that caass@ned to a task, which is a
part of a parallel job. The job launch requirescaattocation of a specified
number of slots starting and finishing synchronpuSlome existing resource
co-allocation algorithms assign a job to the fgst of slots matching the re-
source request without any optimization (the ffistype), while other algo-
rithms are based on an exhaustive search. In #ierpalgorithms for efficient,
dependable and coordinated slot selection are estudnd compared with
known approaches. The novelty of the proposed &gprés in a general algo-
rithm efficiently selecting a set of slots accoglio the specified criterion.

Keywords: Distributed Computing Grid - Dependability: Coordinated Sche-
duling - Resource Managemen$lot - Job- Allocation - Optimization

1 Introduction

Modern high-performance distributed computing syste(HPCS), including Grid,
cloud and hybrid infrastructures provide accesktge amounts of resources [1, 2].
These resources are typically required to execatallpl jobs submitted by HPCS
users and include computing nodes, data storagdsork channels, software, etc.
These resources are usually partly utilized orrveskby high-priority jobs and jobs
coming from the resource owners. Thus, the avalabsources are represented with
a set of time intervals (slots) during which theliuddual computational nodes are
capable to execute parts of independent usersliglajgbs. These slots generally
have different start and finish times and vary @énfprmance level. The presence of a
set of heterogeneous slots impedes the probleraswiurces allocation necessary to
execute the job flow from HPCS users. Resouragnfemtation also results in a de-
crease of the total computing environment utilizatievel [1, 2].

There are different approaches for a job-flow scified problem in distributed
computing environments. Multi-agent applicationdkegcheduling [3] actually per-
forms individual jobs execution optimization and,arule, does not imply any global
resource sharing or allocation policy. Such appnosith an unrestricted competition

137

Cynepxomnviomepnuie onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

for the available computing resources may resulanninefficient and unbalanced
resources usage and hence poor overall job-flowwgian efficiency.

Job flow scheduling in virtual organizations (V@) b] suggests uniform rules of
resource sharing and consumption, in particulaedasn economic models. This
approach allows improving the job-flow level schiénly and resource distribution
efficiency. VO formation and performance largelypdads on mutually beneficial
collaboration between all the related stakeholddswever, users’ preferences and
owners’ and administrators’ preferences may confiith each other. Users are likely
to be interested in the fastest possible runnimge tior their jobs with least possible
costs whereas VO preferences are usually tunealiatable resources load balancing
or node owners’ profit boosting. Thus, VO policiies general should respect all
members and the most important aspect of rulesestigd) by VO is their fairness. At
the same time VO scheduling policies usually limdividual jobs optimization op-
portunities, may violate queue order and posseszddantages common for centra-
lized scheduling structures [6]. In order to imp&rhany of the described job-flow
scheduling schemes and policies, first, one neadalgorithm for selecting sets of
simultaneously available slots required for eadhgaecution. Further, we shall call
such set of simultaneously available slots withghme start and finish times as ex-
ecutionwindow.

In this paper, we study algorithms for optimal @anoptimal heterogeneous re-
sources selection by a given criterion with thdrietion to a total cost. Additionally
we consider practical implementations for a depbledeesources allocation problem.

The rest of the paper is organized as follows.i8e@ presents related works. Sec-
tion 3 introduces a general scheme for searchiogsgts efficient by the specified
criterion. Then several implementations are progaaed considered. Section 4 con-
tains simulation results for comparison of propoaad known algorithms. Section 5
summarizes the paper and describes further restapids.

2 Related Works

The scheduling problem in Grid MP-hard due to its combinatorial nature and many
heuristic-based solutions have been proposed.]lhdiristic algorithms for slot se-
lection, based on user-defined utility functionss @troduced. NWIRE system [7]
performs a slot window allocation based on the dséined efficiency criterion under
the maximum total execution cost constraint. Howetlee optimization occurs only
on the stage of the best found offer selectiorstFit slot selection algorithms (back-
track [8] and NorduGrid [9] approaches) assign jatwto the first set of slots match-
ing the resource request conditions, while othgorthms use an exhaustive search
[10-12] and some of them are based on a lineagéntprogramming (IP) [10] or
mixed-integer programming (MIP) model [11]. Moatheduler [13] implements the
backfilling algorithm and during a slot window selardoes not take into account any
additive constraints such as the minimum requitedage volume or the maximum
allowed total allocation cost.

138

Cynepxomnviomepnuie onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

Modern distributed and cloud computing simulatorgd&im and CloudSim [14,
15] provide tools for jobs execution and co-allamatof simultaneously available
computing resources. Base simulator distributioedgom First Fit allocation algo-
rithms without any specific optimization. CloudAimt extension [15] of CloudSim
implements a double auction to distribute datacehtesources between a job flow
with a fair allocation policy. All these algorithne®nsider price constraints on indi-
vidual nodes and not on a total window allocatiostc However, as we showed in
[16], algorithms with a total cost constraint atdeato perform the search among a
wider set of resources and increase the overaficading efficiency.

GrAS [17] is a Grid job-flow management system bailer Maui scheduler [13].
The resources co-allocation algorithm retrievestao§ simultaneously available slots
with the same start and finish times even in hegmneous environments. However,
the algorithm stops after finding the first suigblindow and, thus, doesn’t perform
any optimization except for window start time miization.

Algorithm [18] performs job’s response and finigtmeé minimization and doesn't
take into account constraint on a total allocabadget. [19] performs window search
on a list of slots sorted by their start time, ierpknts algorithms for window shifting
and finish time minimization, doesn’t support othmstimization criteria and the
overall job execution cost constraint.

AEP algorithm [20] performs window search with clvasit on a total resources
allocation cost, implements optimization accordittg a number of criteria, but
doesn’t support a general case optimization. BeslEP doesn’'t guarantee same
finish time for the window slots in heterogeneounsimnments and, thus, has limited
practical applicability.

Main contribution of this paper is a window co-abdion algorithm performing re-
sources selection according to the user requiresreemd restrictions. The novelty of
the proposed approach consists in implementingreamic programming scheme in
order to optimize heterogeneous resources seleatioording to the scheduling poli-

cy.

3 Resource Selection Algorithm

3.1 General Problem Statement

We consider a s& of heterogeneous computing nodes with differenfopmancep;

and pricec; characteristics. Each node has a local utilizaticimedule known in ad-
vance for a considered scheduling horizon tim& node may be turned off or on by
the provider, transferred to a maintenance staserved to perform computational
jobs. Thus, it's convenient to represent all avddaresources as a set of slots. Each
slot corresponds to one computing node on whishalfocated and may be characte-
rized by its performance and price.

In order to execute a parallel job one needs tacate the specified number of si-
multaneously idle nodes ensuring user requiremiata the resource request. The
resource request specifies numhesf nodes required simultaneously, their minimum
applicable performance, job’s computational volum& and a maximum available

139

Cynepxomnviomepnuie onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

resources allocation budgét The required window length is defined based sioa
with the minimum performance. For example, if addw consists of slots with per-
formancesp € {p;,p;} andp; < p;, then we need to allocate all the slots for a time

T = pL. In this wayV really defines a computational volume for eaclylgijob sub-

13

task. Common start and finish times ensure theilpiéiss of inter-node communica-
tions during the whole job execution. The totaltoofsa window allocation is then
calculated agy, = Y-, T * ;.

These parameters constitute a formal generalizétioresource requests common
among distributed computing systems and simulaitne. overall problem statement
lacks specific features of internal nodes procgsagwell as network communication
aspects that are important for a job executiongpetéince in data-intensive HPC
systems. However, the problem remains independent §pecific HPCS configura-
tions and, thus, the problem solutions may be ewatiagainst general case criteria.
For this purpose we introduce criterignrepresenting a user preference for the par-
ticular job execution during the scheduling horiZorf can take a form of any addi-
tive function and as an example, one may wantltzate suitable resources with the
maximum possible total data storage available leetfoe specified deadline.

3.2 General Window Search Procedure

For a general window search procedure for the protdtatement presented in Sec-
tion 3.1, we combined core ideas and solutions fatgorithm AEP [20] and systems
[17, 19]. Both related algorithms perform windovaseh procedure based on a list of
slots retrieved from a heterogeneous computingrenmient.

Following is the general square window search dlgor. It allocates a set of
simultaneously available slots with performamge> p, for a time, required to com-
pute V instructions on each node, with a restrictibron a total allocation cost and
performs optimization according to criterignlt takes a list of available slots ordered
by their non-decreasing start time as input.

1. Initializing variables for the best criterion valaad corresponding best window:
fmax = 0, Wiax = {}.

2. From the slots available we select different grobpsnode performancg;. For
example, groupP, contains resources allocated on nodes with peeoce
p; = P,. Thus, one slot may be included in several groups.

3. Next is a cycle for all retrieved groups starting from the max performanBg,,.
All the sub-items represent a cycle body.

a. The resources reservation time required to computestructions on a node
v

with performance?; isT; = o
L
b. Initializing variable for a window candidates I}, = {}.
c. Next is a cycle for all slots; in groupP; starting from the slot with the mini-
mum start time. The slots of grofp should be ordered by their non-decreasing
start time. All the sub-items represent a cycleybod

140

Cynepxomnviomepnuie onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

(1) If slot s; doesn't satisfy user requirements (hardware, sofiywetc.) then
continue to the next slot (3c).

(2) If slot lengthl(s;) < T; then continue to the next slot (3c).

(3) Set the new window start tinWg;. start = s;.start.

(4) Add slots; to the current window slot list,,

(5) Next a cycle to check all slotg insidesSy,

i. If there are no slots iy, with performanceP(s;)= P; then continue to
the next slot (3c), as current slots combinatiof§jnwas already consi-
dered for previous group_; .

ii. If Wi.start + T; > s;.end then remove slag; from S, as it can’t con-
sist in a window with the new start tinké. start.

(6) If Sy, size is greater or equal tg then allocate frons;,, a windowW; (a
subset ofn slots with start timé#;. start and lengthl;) with a maximum
criterion value f; and a total costC; < C. If f; > f. then reassign
fmax = fl andWmax = Wi-

4. End of algorithm. At the output variablg,,,,, contains the resulting window with
the maximum criterion valug, .-

3.3 Optimal Slot Subset Allocation

Let us discuss in more details the procedure whildtates an optimal (according to
a criterionf) subset oh slots out ofS,, list (algorithm step 3c(6)). For some particu-
lar criterion functionf a straightforward subset allocation solution maydffered.
For example for a window finish time minimizationis reasonable to return at step
3c(6) the firstn cheapest slots ¢, provided that they satisfy the restriction on the
total cost. These slots will provideW;. finish = W;.start + T;, SO we need to set
fi = —(W;.start + T;) to minimize the finish time at the end of the algorithm.

However in a general case we should consider aesw@®cation problem with
some additive criterionZ = Y\, c, (s;), wherec,(s;) = z; is a target optimization
characteristic value provided by a single slobf W;. In this way we can state the
following problem of an optimah - size window subset allocation out of m slots
stored inSy,:

Z = X121 + x2Z2 + -+ mem, (1)

with the following restrictions:
X161 + XoCp + o+ XppCy < C,
X1 +x, ++x, =n,
x; €{0,1},i = 1..m,

wherez; is a target characteristic value provided by slot; is total cost required to
allocate slot; for a timeT;, x; - is a decision variable determining whether tocate
slots; (x; = 1) or not §; = 0) for the current window.

This problem relates to the class of integer lin@@gramming problems and we
used 0-1 knapsack problem as a base for our impitien. The classical 0-1 knap-
sack problem with a total weiglitand items-slots with weights and valueg; have

141

Cynepromnviomeprule OHu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

the same formal model (1) except for extra restmcon the number of items re-
quired:x; + x, + -+ x,,, = n. To take this into account we implemented theofaH
ing dynamic programming recurrent scheme:

£i(Cmy) = max{fi_, (€,), fi-1(C — iy — 1) + 2,3,)

i=1,..,m, C] =1,..,C,n,=1,..,n,
wheref;(C;, n;) defines the maximurd criterion value fom,-size window allocated
out of firsti slots froms, for a budget;. After the forward induction procedure (2)
is finished the maximum valug,,., = f,,(C,n). x; values are then obtained by a
backward induction procedure.

For the actual implementation we initializ¢d(C;,0) = 0, meaningZ = 0 when
we have no items in the knapsack. Then we perfomverd propagation and calcu-
late f;(C;,) values for all; andn,, based on the first item and the initialized val-
ues. Thery,(C;,n) is calculated taking into account second item £ifd;, n,) and
so on. So after the forward propagation proced2yes(finished the maximum value
Zmax = fm(C,n). Corresponding values for variablesare then obtained by a back-
ward propagation procedure.

An estimated computational complexity of the présdnrecurrent scheme is
O(m * n = C), which isn times harder compared to the original knapsacklprm
(0(m = C)). On the one hand, in practical job resourcesation cases this overhead
doesn't look very large as we may assume that< m andn << C. On the other
hand, this subset allocation procedure (2) may diled multiple times during the
general square window search algorithm (step 3c(6))

3.4 Dependable and Coordinated Resources Allocation

As a practical implementation for a general optatian scheme we propose to study
a resources allocation placement problem. Fig. dwshGantt chart of 4 slots co-

allocation (hollow rectangles) in a computing eamiment with resources pre-utilized

with local and high-priority tasks (filled rectaeg).

Lleft Lright

N - .
. Y
4 .—.[:‘ MAX VALUE

Time

Nodes

Fig. 1. Dependable window co-allocation metrics.

142

Cynepxomnviomepnuie onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

As can be seen from Fig. 1, even using the sameutimg nodes (1, 3, 4, 5 on
Fig. 1) there are usually multiple window placemeptions with respect to the slots
start time. The window placement generally maycféich job execution properties
as cost, finish time, computing energy efficieneyc. Besides, slotproximity to
neighboring tasks reserved on the same computidgsnmay affect a probability of
the job execution delay or failure. For exampleslat reserved too close to the pre-
vious task on the same node may be delayed or lbeothd®y an unexpected delay of
the latter. Thus, dependable resources allocatiay nequire reserving resources with
some reasonable distance to the neighboring tasks.

As presented in Fig. 1, for each window slot we eatimate times to the previous
task finish time:L,.;, and to the next task start timgy; .. Using these values the
following criterion for the window allocation rements average time distance to the
nearest neighboring tasks;,;, = =%Z?:1 min(Liese i Lyrigne 1), Wheren is a total
number of slots in the window. So when implementindependable job scheduling
policy we are interested in maximizing,,;, > value.

On the other hand sucahlifish and individual job-centric resources allocatioti{po
cy may result in an additional resources fragmémaand, hence, inefficient re-
sources usage. Indeed, whgp, 5 is maximized the jobs will try to start at the max
imum distance from each other, eventually leavinmdated slots between them.
Thus, the subsequent jobs may be delayed in theeqdee to insufficient remaining
resources.

For a coordinated job-flow scheduling and resoutoasl balancing we propose
the following window allocation criterion represent average time distance to the

farthest neighboring taské.,.x» = %Z?:l max(Liese i» Lyrigne 1), Wheren is a total

number of slots in the window. By minimizirlg,,,» our motivation is to find a set
of available resources best suited for the padicidb configuration and duration.
This coordinated approach opposes selfish resources allocatiorisambre relevant
for a virtual organization job-flow scheduling peature.

4 Simulation Study

4.1 Simulation Environment Setup

An experiment was prepared as follows using a custistributed environment simu-
lator [2, 16, 20]. For our purpose, it implementheterogeneous resource domain
model: nodes have different usage costs and peafwwenlevels. A space-shared re-
sources allocation policy simulates a local quesiystem (like in GridSim or Cloud-
Sim [14]) and, thus, each node can process onlytasle at any given simulation
time. The execution cost of each task dependssoexicution time, which is propor-
tional to the dedicated node’s performance levéke E€xecution of a single job re-
quires parallel execution of all its tasks.

During the experiment series we performed a windearch operation for a job
requestingn = 7 nodes with performance level; > 1, computational volume
V = 800 and a maximum budget allowed Gs= 644. During each experiment a

143

Cynepromnviomeprule OHu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

new instance for the computing environment was raatally generated with the
following properties. The resource pool include® Teterogeneous computational
nodes. Each node performance level is given asfarony distributed random value
in the interval [2, 10]. So the required windowdém may vary from 400 to 80 time
units. The scheduling interval length is 1200 tiquanta which is enough to run the
job on nodes with the minimum performance. Howewves,introduce the initial re-
source load with advanced reservations and lotal jo complicate conditions for the
search operation. This additional load is distelluhyper-geometrically and results in
up to 30% utilization for each node (Fig. 2).

Nodes

= S =]
= ElEE @44 EE
EEN @42 EE = =
Emmm
Bl I G O G e
[L O
Em EI Emn B

Fig. 2. Initial resources utilization example.

Additionally an independent valug; € [0;10] is randomly generated for each
computing nodel to compare algorithms againét = Y, q; window allocation
criterion.

4.2 General Algorithms Comparison

Firstly we intend to study the proposed resourdéscation algorithm against an
abstract general-case criterigh For this purpose we implemented the following
window search algorithms based on the general wirgkarch procedure introduced
in Section 3.2.

« FirstFit performs a square window allocation in accordamite a general scheme
described in Section 3.2. Returns first suitabld affordable window found. In
fact, performs window start time minimization argpresents algorithm from [17,
19].

« MultipleBest algorithm searches for multiple non-intersectittgraative windows
using FirstFit algorithm. When all possible window allocationg aetrieved the
algorithm searches among them for alternatives thighmaximumQ value. In this
way MultipleBest is similar to [7] approach.

* MaxQ implements a general square window search proeeglitin an optimal slots
subset allocation (2) to return a window with maximtotalQ value.

144

Cynepxomnviomepnuie onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

« MaxQ Lite follows the general square window search procethutedoesn’t im-
plement slots subset allocation (2) procedure ebtbtat step 3c(6) it returns the
first n cheapest slots ¢f,. The totalQ value of thesea slots is returned as a target
criterion, which is then maximized during the séapcocedure. ThusdvlaxQ Lite
has much less computational complexity comparddarQ but doesn’t guarantee
an accurate solution [20].

70
60
50
40

30 61,8
48,5 Sl
20 34,9

10

0
FirstFit MultipleBest MaxQ Lite MaxQ

Q

Fig. 3. Simulation results: average wind@walue.

Fig. 3 shows average = >i., q; value obtained during the simulation. Parame-
ter g; was generated randomly on a [0; 10] interval anthdependent from other
node’s characteristics. Thus, for a single winddw sslots we have the following
practical limits specific for our experimerg:€ [0; 70].

As can be seen from Fig. BlaxQ is indeed provided the maximum average crite-
rion valueQ = 61.8, which is quite close to the practical maximunpezsally com-
pared to other algorithms. The advantage ddeltipleBest andMaxQ Lite is almost
20%. MaxQ Lite implements a simple heuristic but still is ablepimvide a better
solution compared to the best of 50 different alitive executions retrieved bjul-
tipleBest. First Fit provided averag@ value exactly in the middle of [0; 70] which is
44% less compared MaxQ.

4.3 Dependable Resources Allocation

For the window placement problem along withstFit and MultipleBest we intro-
duce two pairs of algorithms basedMaxQ andMaxQ Lite approaches.
e Dependable (DEP) andDEP Lite performL,,;, > maximization, i.e. maxim-
ize the distance to the nearest running or resdasd.
e Coordinated (COORD) andCOORD Lite minimize L., 5 : average distance
to the farthest neighboring tasks.

145

Cynepromnviomeprule OHu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

10

So, by settind.inz andL.xs as target optimization criteria we performed sche-
duling simulation with the same settings descrilbeSection 4.1. The results of 2000
independent scheduling cycles are compiled in Table

As expectedEP provided maximum average distances to the adjdesks: 369
and 480 time units, which is comparable to thegatecution duration. An example
of such allocation from a single simulation expeithis presented on Fig. 4 (a). The
resultingDEP L., » distance value is 4.3 times longer compare#itstFit and al-
most 1.5 longer compared KéultipleBest.

Table 1. Window placement simulation results

Distance to the Distance to the Average
Algorithm nearest task farthest task Operational Time, ms
Lmin 2z Lmax 5
Multiple Best 253 159 103
First Fit 85 342 4.2
DEP 369 480 1695
DEP Lite 275 440 4.5
COORD 9 52 1694
COORD Lite 31 148 4.5

Similarly, COORD provided minimum values for the considered critei and 52
time units. Example allocation is presented on BEigb) where left edge represents
the scheduling interval start time. As can be deam the figure the allocated slots
are highly coincident with the job’s configurati@md duration. Here the resulting
average distance to the farthest task is threestsnealler compared tglultipleBest
and 9 times smaller when compared vidfaP solution.

—
e
e AR
fe
i U
o
[-
(@) (b)
Fig. 4. Simulation examples for dependable (a) and coatdih(b) resources allocation for the
same job.

However due to a higher computational complexitiodk DEP and COORD al-
most 1.7 seconds to find the 7-slots allocationr M@0 available computing nodes,

146

Cynepxomnviomepnuie onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

11

which is 17 times longer comparedNuiltiple Best. At the same time simplifielite
implementations provided better scheduling resotimpared toMultiple Best for
even less operational time: 4.5rRérstFit doesn’t perform any target criteria optimi-
zation and, thus, provides averdgg,s> andL,..s distances with the same opera-
tional time ad.ite algorithms.

MultipleBest in Table 1 has average distance to the farthsktsmaller than to the
nearest task because different alternatives wdeetsd to match the criteridy,;, s
maximization and.,,,x 5 Mminimization. Totally almost 50 different resouraltoca-
tion alternatives were retrieved and consideredVioitipleBest during each experi-
ment.

5 Conclusion and Future Work

In this work, we address the problems of dependabte coordinated slot selection
and co-allocation for parallel jobs in distributedmputing with non-dedicated re-
sources. For this purpose a general window allonaigorithm was proposed along
with two practical implementations: for dependadtel coordinated resources alloca-
tion policies.

A simulation study was carried out to prove theoathm’s optimization efficiency
according to the target criteria. As a result, #uvantage of the proposed general
scheme over traditional scheduling algorithms reac20% against an abstract gener-
al case criterion and more than 50% when we congidelow placement problem.

As a drawback, the general case algorithm hasaively high computational
complexity, especially compared to First Fit apgtoan our further work, we will
refine a general resource co-allocation schemeaderao decrease its computational
complexity.

Acknowledgments This work was partially supported by the Coumgil Grants of

the President of the Russian Federation for Stapp&t of Young Scientists (YPhD-
2297.2017.9), RFBR (grants 18-07-00456 and 18-®&38pPand by the Ministry on
Education and Science of the Russian Federatiajerno. 2.9606.2017/8.9).

References

1. Dimitriadou, S.K., Karatza, H.D.: Job Schedulingaiistributed System Using Backfil-
ling with Inaccurate Runtime Computations. In: Pr2@10 International Conference on
Complex, Intelligent and Software Intensive Systepps,329-336 (2010)

2. Toporkov, V., Toporkova, A., Tselishchev, A., Yewyemhov, D., Potekhin P.: Heuristic
Strategies for Preference-based Scheduling in &irf@rganizations of Utility Grids. J.
Ambient Intelligence and Humanized Computing 6 {83-740 (2015)

3. Buyya, R., Abramson, D., Giddy, J.: Economic Mode&ls Resource Management and
Scheduling in Grid Computing. J. of Concurrency andan@atation: Practice and Expe-
rience 5 (14), 1507-1542 (2002)

147

Cynepxomnviomepnuie onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

12

4. Foster, |., Kesselman C., Tuecke S.: The AnatomiyhefGrid: Enabling Scalable Virtual
Organizations. Int. J. of High Performance Computimplications 15 (3), pp. 200-222
(2001)

5. Carroll, T., Grosu, D.: Formation of Virtual Orgaaiions in Grids: A Game-Theoretic
Approach. Economic Models and Algorithms for Distried Systems 22 (14), 63-81
(2009)

6. Yang, R., Xu, J.: Computing at massive scale: Sdalabnd dependability challenges.
Service-Oriented System Engineering (SOSE), 201BEIESymposium on, pp. 386-397
(2016)

7. Ernemann, C., Hamscher, V., Yahyapour, R.: Econorfee&uling in Grid Computing.

In: Feitelson, D.G., Rudolph, L., Schwiegelshohn(édls.) JISSPP 2002. LNCS, vol. 2537,
pp. 128-152. Springer, Heidelberg (2002)

8. Aida, K., Casanova, H.: Scheduling Mixed-parallelphpations with Advance Reserva-
tions. In: 17th IEEE Int. Symposium on HPDC, pp.®b-IEEE CS Press, New York
(2008)

9. Elmroth, E., Tordsson J.: A Standards-based Gridb&ee Brokering ServiceSupporting
Advance Reservations, Co-allocation and Cross-Gridrdperability. J. of Concurrency
and Computation: Practice and Experience 25 (1832335 (2009)

10. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: Advance Reservation-basedCo-
allocation Algorithm for Distributed Computers andetiork Bandwidth on QoS-
guaranteed Grids. In: Frachtenberg E., Schwieghlsiih (eds.) JSSPP 2010. LNCS, vol.
6253, pp. 16-34. Springer, Heidelberg (2010)

11. Blanco, H., Guirado, F., Lrida, J.L., Albornoz, V:MMIP Model Scheduling for Multi-
clusters. In: Euro-Par 2012. LNCS, vol. 7640, pfB-296. Springer, Heidelberg (2013)

12. Garg, S.K., Konugurthi, P., Buyya, R.: A Linear Praongming-driven Genetic Algorithm
for Meta-scheduling on Utility Grids. Int. J. of RRHlel, Emergent and Distributed Systems
26, 493-517 (2011)

13. Moab Adaptive Computing, http://www.adaptivecompgtaom, last accessed 2018/04/12

14. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rosé.E.., and Buyya,R.: CloudSim:
A Toolkit for Modeling and Simulation of Cloud Comjng Environments and Evaluation
of Resource Provisioning Algorithms. J. Softwaread@ice and Experience 41 (1), 23-50
(2011)

15. Samimi, P., Teimouri, Y., Mukhtar M.: A combinatalrdouble auction resource allocation
model in cloud computing. J. Information Sciencgg &C), 201-216 (2016)

16. Toporkov, V., Toporkova, A., Bobchenkov, A., Yematpv, D.: Resource Selection Al-
gorithms for Economic Scheduling in Distributed ®yss. In: Proc. International Confe-
rence on Computational Science, ICCS 2011, June 043}, Singapore, Procedia Com-
puter Science. Elsevier, vol. 4. pp. 2267-2276 {201

17. Kovalenko, V.N., Koryagin, D.A.: The grid: Analysaf basic principles and ways of ap-
plication. J. Programming and Computer Software 33(8-34 (2009)

18. Makhlouf, S., Yagoubi, B.: Resources Co-allocatioratetyies in Grid Computing. In
CIIA, vol. 825, CEUR Workshop Proceedings, 2011.

19. Netto, M. A. S., Buyya, R.: A Flexible Resource Coestition Model based on Advance
Reservations with Rescheduling Support. In: TechriRagdort, GRIDSTR-2007-17, Grid
Computing and Distributed Systems Laboratory, Thévéisity of Melbourne, Australia,
October 9, 2007.

20. Toporkov, V., Toporkova, A., Tselishchev, A., Yersahov, D.: Slot Selection Algorithms
in Distributed Computing. Journal of Supercomput®g(1), 53-60 (2014)

148

