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Abstract. In this work, we introduce slot selection and co-allocation algorithms 
for parallel jobs in distributed computing with non-dedicated and heterogeneous 
resources. A single slot is a time span that can be assigned to a task, which is a 
part of a parallel job. The job launch requires a co-allocation of a specified 
number of slots starting and finishing synchronously. Some existing resource 
co-allocation algorithms assign a job to the first set of slots matching the re-
source request without any optimization (the first fit type), while other algo-
rithms are based on an exhaustive search. In this paper, algorithms for efficient, 
dependable and coordinated slot selection are studied and compared with 
known approaches. The novelty of the proposed approach is in a general algo-
rithm efficiently selecting a set of slots according to the specified criterion. 
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1 Introduction 

Modern high-performance distributed computing systems (HPCS), including Grid, 
cloud and hybrid infrastructures provide access to large amounts of resources [1, 2]. 
These resources are typically required to execute parallel jobs submitted by HPCS 
users and include computing nodes, data storages, network channels, software, etc. 
These resources are usually partly utilized or reserved by high-priority jobs and jobs 
coming from the resource owners. Thus, the available resources are represented with 
a set of time intervals (slots) during which the individual computational nodes are 
capable to execute parts of independent users’ parallel jobs. These slots generally 
have different start and finish times and vary in performance level. The presence of a 
set of heterogeneous slots impedes the problem of resources allocation necessary to 
execute the job flow from HPCS users.  Resource fragmentation also results in a de-
crease of the total computing environment utilization level [1, 2]. 

There are different approaches for a job-flow scheduling problem in distributed 
computing environments. Multi-agent application level scheduling [3] actually per-
forms individual jobs execution optimization and, as a rule, does not imply any global 
resource sharing or allocation policy. Such approach with an unrestricted competition 
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for the available computing resources may result in an inefficient and unbalanced 
resources usage and hence poor overall job-flow execution efficiency.   

Job flow scheduling in virtual organizations (VO) [4, 5] suggests uniform rules of 
resource sharing and consumption, in particular based on economic models. This 
approach allows improving the job-flow level scheduling and resource distribution 
efficiency. VO formation and performance largely depends on mutually beneficial 
collaboration between all the related stakeholders. However, users’ preferences and 
owners’ and administrators’ preferences may conflict with each other. Users are likely 
to be interested in the fastest possible running time for their jobs with least possible 
costs whereas VO preferences are usually tuned for available resources load balancing 
or node owners’ profit boosting. Thus, VO policies in general should respect all 
members and the most important aspect of rules suggested by VO is their fairness. At 
the same time VO scheduling policies usually limit individual jobs optimization op-
portunities, may violate queue order and possess disadvantages common for centra-
lized scheduling structures [6]. In order to implement any of the described job-flow 
scheduling schemes and policies, first, one needs an algorithm for selecting sets of 
simultaneously available slots required for each job execution. Further, we shall call 
such set of simultaneously available slots with the same start and finish times as ex-
ecution window.  

In this paper, we study algorithms for optimal or near-optimal heterogeneous re-
sources selection by a given criterion with the restriction to a total cost. Additionally 
we consider practical implementations for a dependable resources allocation problem. 

The rest of the paper is organized as follows. Section 2 presents related works. Sec-
tion 3 introduces a general scheme for searching slot sets efficient by the specified 
criterion. Then several implementations are proposed and considered. Section 4 con-
tains simulation results for comparison of proposed and known algorithms. Section 5 
summarizes the paper and describes further research topics. 

2 Related Works 

The scheduling problem in Grid is NP-hard due to its combinatorial nature and many 
heuristic-based solutions have been proposed. In [7] heuristic algorithms for slot se-
lection, based on user-defined utility functions, are introduced. NWIRE system [7] 
performs a slot window allocation based on the user defined efficiency criterion under 
the maximum total execution cost constraint. However, the optimization occurs only 
on the stage of the best found offer selection. First fit slot selection algorithms (back-
track [8] and NorduGrid [9] approaches) assign any job to the first set of slots match-
ing the resource request conditions, while other algorithms use an exhaustive search 
[10-12] and some of them are based on a linear integer programming (IP) [10] or 
mixed-integer programming (MIP) model [11]. Moab scheduler [13] implements the 
backfilling algorithm and during a slot window search does not take into account any 
additive constraints such as the minimum required storage volume or the maximum 
allowed total allocation cost.  
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Modern distributed and cloud computing simulators GridSim and CloudSim [14, 
15] provide tools for jobs execution and co-allocation of simultaneously available 
computing resources. Base simulator distributions perform First Fit allocation algo-
rithms without any specific optimization. CloudAuction extension [15] of CloudSim 
implements a double auction to distribute datacenters’ resources between a job flow 
with a fair allocation policy. All these algorithms consider price constraints on indi-
vidual nodes and not on a total window allocation cost. However, as we showed in 
[16], algorithms with a total cost constraint are able to perform the search among a 
wider set of resources and increase the overall scheduling efficiency. 

GrAS [17] is a Grid job-flow management system built over Maui scheduler [13]. 
The resources co-allocation algorithm retrieves a set of simultaneously available slots 
with the same start and finish times even in heterogeneous environments. However, 
the algorithm stops after finding the first suitable window and, thus, doesn’t perform 
any optimization except for window start time minimization. 

Algorithm [18] performs job’s response and finish time minimization and doesn’t 
take into account constraint on a total allocation budget. [19] performs window search 
on a list of slots sorted by their start time, implements algorithms for window shifting 
and finish time minimization, doesn’t support other optimization criteria and the 
overall job execution cost constraint. 

AEP algorithm [20] performs window search with constraint on a total resources 
allocation cost, implements optimization according to a number of criteria, but 
doesn’t support a general case optimization. Besides AEP doesn’t guarantee same 
finish time for the window slots in heterogeneous environments and, thus, has limited 
practical applicability. 

Main contribution of this paper is a window co-allocation algorithm performing re-
sources selection according to the user requirements and restrictions. The novelty of 
the proposed approach consists in implementing a dynamic programming scheme in 
order to optimize heterogeneous resources selection according to the scheduling poli-
cy.  

3 Resource Selection Algorithm 

3.1 General Problem Statement 

We consider a set � of heterogeneous computing nodes with different performance �� 
and price �� characteristics. Each node has a local utilization schedule known in ad-
vance for a considered scheduling horizon time �. A node may be turned off or on by 
the provider, transferred to a maintenance state, reserved to perform computational 
jobs. Thus, it’s convenient to represent all available resources as a set of slots. Each 
slot corresponds to one computing node on which it’s allocated and may be characte-
rized by its performance and price. 

In order to execute a parallel job one needs to allocate the specified number of si-
multaneously idle nodes ensuring user requirements from the resource request. The 
resource request specifies number � of nodes required simultaneously, their minimum 
applicable performance �, job’s computational volume � and a maximum available 
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resources allocation budget �. The required window length is defined based on a slot 
with the minimum performance. For example, if a window consists of slots with per-
formances � 	 
�� , ��
 and �� � ��, then we need to allocate all the slots for a time 

� � �

�� 
. In this way � really defines a computational volume for each single job sub-

task. Common start and finish times ensure the possibility of inter-node communica-
tions during the whole job execution. The total cost of a window allocation is then 
calculated as �� � ∑ � � ��

�
��� . 

These parameters constitute a formal generalization for resource requests common 
among distributed computing systems and simulators. The overall problem statement 
lacks specific features of internal nodes processing as well as network communication 
aspects that are important for a job execution performance in data-intensive HPC 
systems. However, the problem remains independent from specific HPCS configura-
tions and, thus, the problem solutions may be evaluated against general case criteria. 
For this purpose we introduce criterion � representing a user preference for the par-
ticular job execution during the scheduling horizon �. � can take a form of any addi-
tive function and as an example, one may want to allocate suitable resources with the 
maximum possible total data storage available before the specified deadline. 

3.2 General Window Search Procedure 

For a general window search procedure for the problem statement presented in Sec-
tion 3.1, we combined core ideas and solutions from algorithm AEP [20] and systems 
[17, 19]. Both related algorithms perform window search procedure based on a list of 
slots retrieved from a heterogeneous computing environment. 

Following is the general square window search algorithm. It allocates a set of � 

simultaneously available slots with performance �� � �, for a time, required to com-
pute � instructions on each node, with a restriction � on a total allocation cost and 
performs optimization according to criterion �. It takes a list of available slots ordered 
by their non-decreasing start time as input. 

1. Initializing variables for the best criterion value and corresponding best window: 
����  �  0, !���  �  

. 

2. From the slots available we select different groups by node performance ��. For 
example, group "#  contains resources allocated on nodes with performance 
�� $ "# . Thus, one slot may be included in several groups. 

3. Next is a cycle for all retrieved groups "�  starting from the max performance "���. 
All the sub-items represent a cycle body. 
a. The resources reservation time required to compute � instructions on a node 

with performance "� is �� � �

�� 
.  

b. Initializing variable for a window candidates list %� � 

. 
c. Next is a cycle for all slots &� in group "� starting from the slot with the mini-

mum start time. The slots of group "� should be ordered by their non-decreasing 
start time. All the sub-items represent a cycle body. 
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(1) If slot &� doesn’t satisfy user requirements (hardware, software, etc.) then 
continue to the next slot (3c).  

(2) If slot length '(&�) �  �� then continue to the next slot (3c). 
(3) Set the new window start time *� . &,-., �  &� . &,-.,.  
(4) Add slot &� to the current window slot list %� 
(5) Next a cycle to check all slots &� inside %� 

i. If there are no slots in %� with performance "(&�)= "� then continue to 
the next slot (3c), as current slots combination in %� was already consi-
dered for previous group "�/�. 

ii.  If *� . &,-., 0 �� � &� . 1�2 then remove slot &� from %� as it can’t con-
sist in a window with the new start time *� . &,-.,.  

(6) If %� size is greater or equal to �, then allocate from %� a window *� (a 
subset of � slots with start time *� . &,-., and length ��) with a maximum 
criterion value �� and a total cost �� � �. If �� � ���� then reassign 
���� � �� and *��� � *�. 

4. End of algorithm. At the output variable *��� contains the resulting window with 
the maximum criterion value ����. 

3.3 Optimal Slot Subset Allocation 

Let us discuss in more details the procedure which allocates an optimal (according to 
a criterion �) subset of � slots out of %� list (algorithm step 3c(6)). For some particu-
lar criterion function � a straightforward subset allocation solution may be offered. 
For example for a window finish time minimization it is reasonable to return at step 
3c(6) the first � cheapest slots of %� provided that they satisfy the restriction on the 
total cost. These � slots will provide *� . �3�3&4 � *� . &,-., 0  ��, so we need to set 
�� � 5(*� . &,-., 0 ��) to minimize the finish time at the end of the algorithm.  

However in a general case we should consider a subset allocation problem with 
some additive criterion:  6 � ∑ �7

�
��� (&�), where �7(&�) � 8�   is a target optimization 

characteristic value provided by a single slot &� of *�. In this way we can state the 
following problem of an optimal � - size window subset allocation out of m slots 
stored in %�: 

 6 � 9�8� 0 9:8: 0 ; 0 9�8�, (1) 

with the following restrictions: 
9��� 0 9:�: 0 ; 0 9��� < �, 

9� 0 9: 0 ; 0 9� � �, 
9� 	 
0,1
, 3 � 1. . >, 

where 8� is a target characteristic value provided by slot &�, �� is total cost required to 
allocate slot &� for a time ��, 9� - is a decision variable determining whether to allocate 
slot &� (9� � 1) or not (9� � 0) for the current window. 

This problem relates to the class of integer linear programming problems and we 
used 0-1 knapsack problem as a base for our implementation. The classical 0-1 knap-
sack problem with a total weight � and items-slots with weights �� and values 8� have 
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the same formal model (1) except for extra restriction on the number of items re-
quired: 9� 0 9: 0 ; 0 9� � �. To take this into account we implemented the follow-
ing dynamic programming recurrent scheme: 

 ��?�� , �#@ � max
��/�(�� , �#), ��/�(�� 5 �� , �# 5 1) 0 8�
, (2) 

3 � 1, . . , >,  �� � 1, . . , �, �# � 1, . . , �, 
where ��?��, �#@ defines the maximum 6 criterion value for �#-size window allocated 
out of first 3 slots from %� for a budget ��. After the forward induction procedure (2) 
is finished the maximum value 6��� � ��(�, �). 9� values are then obtained by a 
backward induction procedure. 

For the actual implementation we initialized ��?��, 0@ � 0, meaning 6 � 0 when 
we have no items in the knapsack. Then we perform forward propagation and calcu-
late ��?��, �#@ values for all �� and �# based on the first item and the initialized val-
ues. Then �:?�� , �#@ is calculated taking into account second item and ��?��, �#@ and 
so on. So after the forward propagation procedure (2) is finished the maximum value 
6��� � ��(�, �). Corresponding values for variables 9� are then obtained by a back-
ward propagation procedure. 

An estimated computational complexity of the presented recurrent scheme is 
D(> �  � �  �), which is � times harder compared to the original knapsack problem 
(D(> � �)). On the one hand, in practical job resources allocation cases this overhead 
doesn’t look very large as we may assume that � ��  > and � ��  �. On the other 
hand, this subset allocation procedure (2) may be called multiple times during the 
general square window search algorithm (step 3c(6)). 

3.4 Dependable and Coordinated Resources Allocation 

As a practical implementation for a general optimization scheme we propose to study 
a resources allocation placement problem. Fig. 1 shows Gantt chart of 4 slots co-
allocation (hollow rectangles) in a computing environment with resources pre-utilized 
with local and high-priority tasks (filled rectangles). 

 
Fig. 1. Dependable window co-allocation metrics. 
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As can be seen from Fig. 1, even using the same computing nodes (1, 3, 4, 5 on 
Fig. 1) there are usually multiple window placement options with respect to the slots 
start time. The window placement generally may affect such job execution properties 
as cost, finish time, computing energy efficiency, etc. Besides, slots proximity to 
neighboring tasks reserved on the same computing nodes may affect a probability of 
the job execution delay or failure. For example, a slot reserved too close to the pre-
vious task on the same node may be delayed or cancelled by an unexpected delay of 
the latter. Thus, dependable resources allocation may require reserving resources with 
some reasonable distance to the neighboring tasks. 

As presented in Fig. 1, for each window slot we can estimate times to the previous 
task finish time: �EFGH and to the next task start time: �I�JKH. Using these values the 
following criterion for the window allocation represents average time distance to the 

nearest neighboring tasks: �LMN O � �

�
∑ >3�(�EFGH �, �I�JKH �)�

��� , where � is a total 

number of slots in the window. So when implementing a dependable job scheduling 
policy we are interested in maximizing  �LMN O value.  

On the other hand such selfish and individual job-centric resources allocation poli-
cy may result in an additional resources fragmentation and, hence, inefficient re-
sources usage. Indeed, when �LMN O is maximized the jobs will try to start at the max-
imum distance from each other, eventually leaving truncated slots between them. 
Thus, the subsequent jobs may be delayed in the queue due to insufficient remaining 
resources.  

For a coordinated job-flow scheduling and resources load balancing we propose 
the following window allocation criterion representing average time distance to the 

farthest neighboring tasks: �LPQ O � �

�
∑ >-9(�EFGH � , �I�JKH �)�

��� , where � is a total 

number of slots in the window. By minimizing �LPQ O our motivation is to find a set 
of available resources best suited for the particular job configuration and duration. 
This coordinated approach opposes selfish resources allocation and is more relevant 
for a virtual organization job-flow scheduling procedure. 

4 Simulation Study 

4.1 Simulation Environment Setup 

An experiment was prepared as follows using a custom distributed environment simu-
lator [2, 16, 20]. For our purpose, it implements a heterogeneous resource domain 
model: nodes have different usage costs and performance levels. A space-shared re-
sources allocation policy simulates a local queuing system (like in GridSim or Cloud-
Sim [14]) and, thus, each node can process only one task at any given simulation 
time. The execution cost of each task depends on its execution time, which is propor-
tional to the dedicated node’s performance level. The execution of a single job re-
quires parallel execution of all its tasks. 

During the experiment series we performed a window search operation for a job 
requesting � �  7 nodes with performance level �� $ 1, computational volume 
� �  800 and a maximum budget allowed is � �  644. During each experiment a 
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new instance for the computing environment was automatically generated with the 
following properties. The resource pool includes 100 heterogeneous computational 
nodes. Each node performance level is given as a uniformly distributed random value 
in the interval [2, 10]. So the required window length may vary from 400 to 80 time 
units. The scheduling interval length is 1200 time quanta which is enough to run the 
job on nodes with the minimum performance. However, we introduce the initial re-
source load with advanced reservations and local jobs to complicate conditions for the 
search operation. This additional load is distributed hyper-geometrically and results in 
up to 30% utilization for each node (Fig. 2). 

 

 

Fig. 2. Initial resources utilization example. 

Additionally an independent value V�  	 W0; 10Y is randomly generated for each 
computing node 3 to compare algorithms against Z �  ∑ V�

�
���  window allocation 

criterion. 

4.2 General Algorithms Comparison 

Firstly we intend to study the proposed resources allocation algorithm against an 
abstract general-case criterion Z. For this purpose we implemented the following 
window search algorithms based on the general window search procedure introduced 
in Section 3.2. 

• FirstFit performs a square window allocation in accordance with a general scheme 
described in Section 3.2. Returns first suitable and affordable window found. In 
fact, performs window start time minimization and represents algorithm from [17, 
19]. 

• MultipleBest algorithm searches for multiple non-intersecting alternative windows 
using FirstFit algorithm. When all possible window allocations are retrieved the 
algorithm searches among them for alternatives with the maximum Q value. In this 
way MultipleBest is similar to [7] approach. 

• MaxQ implements a general square window search procedure with an optimal slots 
subset allocation (2) to return a window with maximum total Q value. 
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• MaxQ Lite follows the general square window search procedure but doesn’t im-
plement slots subset allocation (2) procedure. Instead at step 3c(6) it returns the 
first � cheapest slots of %�. The total Q value of these � slots is returned as a target 
criterion, which is then maximized during the search procedure. Thus, MaxQ Lite 
has much less computational complexity compared to MaxQ but doesn’t guarantee 
an accurate solution [20]. 

 

Fig. 3. Simulation results: average window Q value. 

Fig. 3 shows average Z �  ∑ V�
�
���  value obtained during the simulation. Parame-

ter V� was generated randomly on a [0; 10] interval and is independent from other 
node’s characteristics. Thus, for a single window of 7 slots we have the following 
practical limits specific for our experiment: Z 	 W0; 70Y. 

As can be seen from Fig. 3, MaxQ is indeed provided the maximum average crite-
rion value Z �  61.8, which is quite close to the practical maximum, especially com-
pared to other algorithms. The advantage over MultipleBest and MaxQ Lite is almost 
20%. MaxQ Lite implements a simple heuristic but still is able to provide a better 
solution compared to the best of 50 different alternative executions retrieved by Mul-
tipleBest. First Fit provided average Z value exactly in the middle of [0; 70] which is 
44% less compared to MaxQ. 

4.3 Dependable Resources Allocation  

For the window placement problem along with FirstFit and MultipleBest we intro-
duce two pairs of algorithms based on MaxQ and MaxQ Lite approaches.  

• Dependable (DEP) and DEP Lite perform �LMN O maximization, i.e. maxim-
ize the distance to the nearest running or reserved tasks.  

• Coordinated (COORD) and COORD Lite minimize �LPQ O : average distance 
to the farthest neighboring tasks. 
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So, by setting �LMN O  and �LPQ O as target optimization criteria we performed sche-
duling simulation with the same settings described in Section 4.1. The results of 2000 
independent scheduling cycles are compiled in Table 1. 

As expected DEP provided maximum average distances to the adjacent tasks: 369 
and 480 time units, which is comparable to the job’s execution duration. An example 
of such allocation from a single simulation experiment is presented on Fig. 4 (a). The 
resulting DEP �LMN O distance value is 4.3 times longer compared to FirstFit and al-
most 1.5 longer compared to MultipleBest. 

Table 1. Window placement simulation results 

Algorithm 
Distance to the 

nearest task 

�LMN O 

Distance to the  

farthest task 

�LPQ O 

Average  

Operational Time, ms 

Multiple Best 253 159 103 

First Fit 85 342 4.2 

DEP 369 480 1695 

DEP Lite 275 440 4.5 

COORD 9 52 1694 

COORD Lite 31 148 4.5 

 
Similarly, COORD provided minimum values for the considered criteria: 9 and 52 

time units. Example allocation is presented on Fig. 4 (b) where left edge represents 
the scheduling interval start time. As can be seen from the figure the allocated slots 
are highly coincident with the job’s configuration and duration. Here the resulting 
average distance to the farthest task is three times smaller compared to MultipleBest 
and 9 times smaller when compared with DEP solution. 

 

     
(a)                                                           (b) 

Fig. 4. Simulation examples for dependable (a) and coordinated (b) resources allocation for the 
same job. 

However due to a higher computational complexity it took DEP and COORD al-
most 1.7 seconds to find the 7-slots allocation over 100 available computing nodes, 
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which is 17 times longer compared to Multiple Best. At the same time simplified Lite 
implementations provided better scheduling results compared to Multiple Best for 
even less operational time: 4.5ms. FirstFit doesn’t perform any target criteria optimi-
zation and, thus, provides average �LMN O  and �LPQ O distances with the same opera-
tional time as Lite algorithms. 

MultipleBest in Table 1 has average distance to the farthest task smaller than to the 
nearest task because different alternatives were selected to match the criteria: �LMN O 
maximization and �LPQ O minimization. Totally almost 50 different resource alloca-
tion alternatives were retrieved and considered by MultipleBest during each experi-
ment. 

5 Conclusion and Future Work 

In this work, we address the problems of dependable and coordinated slot selection 
and co-allocation for parallel jobs in distributed computing with non-dedicated re-
sources. For this purpose a general window allocation algorithm was proposed along 
with two practical implementations: for dependable and coordinated resources alloca-
tion policies.  

A simulation study was carried out to prove the algorithm’s optimization efficiency 
according to the target criteria. As a result, the advantage of the proposed general 
scheme over traditional scheduling algorithms reaches 20% against an abstract gener-
al case criterion and more than 50% when we consider window placement problem.  

As a drawback, the general case algorithm has a relatively high computational 
complexity, especially compared to First Fit approach. In our further work, we will 
refine a general resource co-allocation scheme in order to decrease its computational 
complexity. 
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