Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

Efficiency Estimation for the Mathematical
Physics Algorithms for Distributed Memory
Computers

Igor Konshin'+2

! Dorodnicyn Computing Centre of FRC CSC RAS, Moscow 119333, Russia
2 Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow 119333, Russia

igor .konshin@gmail.com

Abstract. The paper presents several models of parallel program runs
on computer platforms with distributed memory. The prediction of the
parallel algorithm efficiency is based on algorithm arithmetic and com-
munication complexities. For some mathematical physics algorithms for
explicit schemes of the solution of the heat transfer equation the speedup
estimations were obtained, as well as numerical experiments were per-
formed to compare the actual and theoretically predicted speedups.

Keywords: Mathematical physics - Parallel computing - Parallel effi-
ciency estimation - Speedup

1 Introduction

There are many works and Internet resources, which describe the properties
of computational algorithms, parallel computing models, and also give recom-
mendations on writing the most effective applications [1H3]. In this paper, an
attempt is made to develop a constructive model of parallel computations, on
the basis of which it is possible to predict the parallel efficiency of an algorithm
implementation on a particular computing system.

When working on the shared memory computers, it is possible to construct
such a model based on the Amdahl law (see [4,/5]), while on distributed memory
computers, it is necessary to take into account the parallel properties of both
the implemented algorithm and computer system. In the present paper, we will
perform a detailed analysis of the message transfer rate depending on the length
of the message. If the message initialization time is ignored in the model, then
it is possible to obtain more compact formulas for parallel efficiency estimates,
while taking it into account, they become somewhat more complex, but also
constructive and meaningful.

In this paper, we will focus our attention on the estimation of parallel effi-
ciency for mathematical physics problems. In the scientific literature there are
descriptions of a huge number of results on the achieved parallel efficiency for
mathematical physics problems, but there are no theoretical estimates of what

183

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

2 1. Konshin

efficiency could be achieved in practice, and thus a comparison of theoretical
and actual ones.

This paper is organized as follows. Sections 2 and 3 give estimates of the al-
gorithms parallel efficiency and their application to mathematical physics prob-
lems. Section 4 briefly describes the configuration of the computational cluster
used. In Sections 5 and 6, the numerical experiments on combination of asyn-
chronous interprocessor data exchanges and calculations, as well as the depen-
dance of data transmission rate on the message length are studied in detail. In
Section 7, the parallel efficiency estimates are refined on the basis of the results
obtained, as well as their application to the mathematical physics algorithms is
considered. Section 8 describes the results of numerical experiments, while the
conclusion sums up the main results of the paper.

2 Estimates of the Algorithms Parallel Efficiency

To obtain an estimate of the parallel algorithm run time, the key point is to
estimate the transmission rate of the message. Let us exploit for this purpose
the widely used formula

T. =19+ 7L, (1)

where 79 is the message initialization time, 7. is the message transfer rate (i.e.,
the message transmission time for the unit message length), and 7 is the message
transmission time for the message length L.. A detailed study of the values of
70 and 7. will be carried out later in Section [and now it will suffice for us
to assume that the length of the messages in the algorithms under investigation
is large enough and therefore, for simplicity, we can assume that 79 = 0. This
allows us to substantially simplify formula :

T. =71.L,. (2)

Let us estimate the speedup that can be achieved by using p processors in
the implementation of some parallel algorithm. Let T'(p) be the time of solving
the problem on p processors, then the speedup obtained using this algorithm
will be expressed by the formula:

S =T(1)/T(p).

Following [4,/5], for further estimates we denote by L, the total number of
arithmetic operations of the algorithm, and by 7, the execution time of one
characteristic arithmetic operation. Similarly, let L. be the total length of all
messages, and 7. is the already introduced time for transmitting a message of unit
length. Then, the execution time of all arithmetic operations can be expressed by
the formula T, = 7, L,, and the transmission time of all messages by T, = 7.L..

Additionally, you can introduce a value

T =T¢/Tas (3)

184

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

Algorithms Efficiency Estimation 3

which expresses the characteristic of the ‘parallelism’ property of the used com-
puter, in other words meaning how many arithmetic operations can be performed
during the transfer of one number to another processor.

Similarly, we introduce the value

L=Lc/Ly, (4)

which expresses the characteristic of the ‘parallelism’ property of the algorithm
under investigation, i.e. is the reciprocal of the number of arithmetic operations
performed during the algorithm execution process to transfer of one number to
another processor.

Now, in estimating the speedup, we can write:

S = S(p) = T(l)/T(p) = Ta/(Ta/p + Tc/p) = pTa/(Ta + TC>
= p/(]. + Tc/Ta) = p/(]. + (Tch)/(TaLa)) = p/(]. + TL) (5)

In this connection, the estimate of the algorithm’s parallel performance is written
as follows:
E=S/p=1/(1+7L). (6)

Remark 1. We note that a twofold decrease in the efficiency of the algorithm
occurs when L = 1/7.

In papers [4[5], a detailed discussion of the applicability of the obtained
estimates 7@ can be found, but we shall confine ourselves to explaining at
first glance the strange fact that the formula for evaluating the efficiency of @
does not include the number of processors used. In fact, the value of L depends
on the total transmission length L., which, in turn, depends on the number of
processors p.

3 Estimates for Mathematical Physics Algorithms

Now, following [6], we can proceed to the estimate of the parallel efficiency of
mathematical physics algorithms. For simplicity, we restrict our consideration
to explicit schemes used for nonstationary problems described by some finite-
difference equations.

We consider the problem in a d-dimensional cube (d = 1,2, 3) with side in n
cells, the total number of d-dimensional cubic cells is equal to N = n?. Let V
denote the number of unknown functions per computational cell (for example,
V = 5 for three velocities u, v, w, as well as pressure and temperature). To
calculate the values at a new time step for each cell, it is required to know the
values in the nearest neighboring cells, which means using the (2d + 1)-points
d-dimensional discretization stencil (more complex discretizations, especially for
equations with cross derivatives, can contain in the stencil up to 3% points).
We denote by C' the average number of arithmetic operations per cell when
calculating the solution at a new time step. Now, almost everything is ready for

185

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

4 I. Konshin
4
17
V1V
)/
D=1, D=2, D=3,
p=r, p=rXr, p=rTXTXT,
Lo = CN/p, Lo = CN/p, Lo = CN/p,
L.~ 2Vn? L. =~ 4Vn?/r, L. =~ 6Vn?/r?,
L~2Vr/(Cn)~r/n. L~4Vr/(Cn) ~r/n. L~6Vr/(Cn)~r/n.

Fig. 1. Distribution of data by processors for the three-dimensional problem of
mathematical physics for r layers in each of one, two, and three directions.

estimating the speedup when solving the described problem on p processors, but
the resulting speedup will depend essentially on the way the cells are assigned
to the processors.

Figure [I] shows three different types of data distribution by processors, D =
1,2,3, using r layers in one, two, and three directions, respectively. The total
number of processors in these cases is equal to p = 7.

Assuming that D < d, we can begin to estimate the computational and
communication costs.

The arithmetic cost per processor for all the cases under consideration is
L, = CN/p = Cn?/rP. Communication costs will depend on the number of
boundary cells which need to be sent (received) on each of the processors, and
will be L, = (2 — 2/r)DVn?=!/rP=1 Note that L. = 0 for r = 1 as required.

In this way, the main characteristic of the parallelism for the algorithm ({4
is calculated as follows:

L=1L./Ls=(2-2/r)DVni=1rP/(Cn*P~1) = (2= 2/r)DVC™" - r/n ~r/n.
(7)
This value is inversely proportional to the number of cells of the given processor
in the direction of partitioning by processors.
Substituting the resulting expression for L into @, we obtain

E=1/(1+(2-2/r)DVC~ 1 -r/n), S =pE (8)
or to clarify the dependence on the original problem dimension d:
E(d,D)=1/1+2-2p"YP)DVC~ 17 pV/PN-YVd S =pE(, D). (9)

To illustrate the specificity of @, we give a short Table (I} which shows
theoretical estimates of the parallel efficiency depending on the number of pro-

186

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

Algorithms Efficiency Estimation 5

cessors p and the type of domain decomposition by processors D for the three-
dimensional problem with the following set of parameters:

d=3, N=n? n=1000, V=5 C=30, D=1,2,3, 7=10. (10)

The obtained efficiency values show the importance of using the right type of
decomposition D, especially when utilizing a large number of processors.

4 INM RAS Cluster

Numerical experiments were performed on the cluster [7] of the Marchuk Insti-
tute of Numerical Mathematics of the Russian Academy of Sciences. Configura-
tion of computational nodes from the ‘x6core’ segment used for calculations:

— Compute Node Asus RS704D-EG6;

— 12 cores (two 6-core Intel Xeon processor X5650Q2.67 GHz);
RAM: 24 GB;

Operating system: SUSE Linux Enterprise Server 11 SP1 (x86_64);
— Network: Mellanox Infiniband QDR 4x.

To build the code, we used the Intel C compiler version 4.0.1, with support for
MPI version 5.0.3 [8].

5 Asynchronous Data Exchanges

The availability in the MPI standard the possibility of carrying out the asyn-
chronous communications allows, after initializing the exchanges, without wait-
ing for them to complete, immediately proceed with the calculations for which
the data required is already available on the processor. The most of parallel com-
putation guides [2] are permeated by the spirit of carrying out asynchronous data
exchanges. However, the effect of overlapping calculations and data exchanges
directly depends on specifics of architecture and implementation of MPI. Let we
try to deal with this issue in more detail.

A special program was developed that implements test 1 from [9]. When car-
rying out the intensive calculations for the vector of numbers, there were sending
the portions of processed values to another processor, which was used in its cal-
culations at the next iteration. Asynchronous data exchanges were performed
using the MPI_Isend and MPI_Irecv functions, as well as the MPI_Waitall func-
tion was used for completing all the data transmissions. The length of the vector
was chosen to be M = 225 and the number of iterations was taken equal to
10. The number of portions to which the vector was partitioned before it was
sent to another processor was chosen to be 1, 8, and 64. The calculations were
performed on the INM RAS cluster [7] (see Section [)) in the ‘x6core’ segment.

The results of numerical experiments on asynchronous data exchanges are
given in Table [2| Deviations at time measurements at various iterations were
insignificant and were equal to from 1 to 5 percent. Let us consider the obtained

187

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

6 I. Konshin
Table 1. Theoretical estimate of the Table 2. Time of test 1 on asyn-
parallel efficiency @D using the pa- chronous data exchanges in the
rameters set . ‘x6core’ segment.

p |D=1|D=2|D=3 Narops|p =1lp=2p =13

1| 1.00 | 1.00 | 1.00 1 |15.42|17.18| 18.52

10| 0.97 | 0.98 | 0.98 8 |15.43|15.58| 15.78

641 0.82 | 0.95 | 0.96 64 [15.43|15.63| 15.77

729 0.29 | 0.85 | 0.92

results in more detail. Calculations and data exchanges were carried out at the
first and last of the used processes. The parameter p means the number of cores
used, thus, in the second column p = 1 the results of calculations without data
exchanges are shown. The time measurements in this column are almost the
same, we will use them as a reference point for our further observations. In
the first line for Ngrops = 1, we have a situation where all the data is sent
in one portion, so the exchanges are synchronous and no overlap occurs with
the calculations. The p = 2 column reflects the situation where two exchanging
processes are physically located on one compute node and, despite the use of the
MPI library, exchanges are actually conducted within the shared memory. One
can see that due to synchronous exchanges (Narops = 1), the total computation
time increased by about 10%. The p = 13 column contains data when two
exchanging processes are physically located on different compute nodes. Indeed,
one computing node of the ‘x6core’ segment consists of two 6-core processors,
and since calculations and exchanges are performed in the first and last core,
the communications were carried out through the interprocessor network. Due
to synchronous exchanges (Ngyops = 1), the total computational time in this case
increased by about 20%. With the increase in the number of portions Nyrops.
the total computational time decreases, tending to the respective time on 1
processor.

The obtained results allow to conclude that on the particular computer the
effect of asynchronous exchanges is observed, but it is not significant and deter-
minative.

It should also be noted that the theoretical consideration of the contribution
of asynchronous exchanges to the overall solution time is extremely difficult,
since, assuming that the delay time due to exchanges is negligible, the speedup
of all algorithms should be considered linear (which is very far from reality even
with an ideally uniform CPU usage). Our goal is to develop simple and con-
structive efficiency estimates for parallel applications for mathematical physics
problems.

6 A Detailed Analysis of the Data Transmission Rate

To refine the estimates f@ and @, it is necessary to perform a detailed anal-
ysis of the message transfer rate, taking into account the initialization time of the

188

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

Algorithms Efficiency Estimation 7

message To from formula (I). Let us describe test 2 from [9], which investigates
this dependence.

The described numerical experiment consisted in transmitting a message with
the total length of L, = M = 2™ words of the type ‘double’, and the message
was divided into n.; = 2* portions of length L.; = L./n.; = 2™"% i =0,...,m.
For more statistical confidence, the test was repeated several times.

Thus m + 1 values of T ; was obtained for the total message transmission
time.

Let us derive the theoretical estimates of T ;, taking into account the time
of initialization of the messages 7 in :

To(Le) = Tene = (10 + 7eLe)ne, ne= M/L,. (11)

For numerical experiments, the parameters m = 25 and M = 2 = 33554432
were chosen, and the values T.(L. ;) for L.; = 2¢. i =0,...,m, were obtained for
the ‘x6core’ segment. As the measured initialization time of the message we can
take the value

70 = max Tu(L.;)/M =T.(1)/M =10.0/M ~3.0-1077, (12)

i=0,...,m
and as the average transmission rate of one number, we can use the value

Te= min T.(Le;)/M =0.10/M ~3.0-107°. (13)

i=0,...,m

The values of the constants 10.0 and 0.10 were obtained from the described nu-
merical experiment conducted in the ‘x6core’ segment, for simplicity, the values
of the constants were rounded. You can see that for the values obtained, the ratio
To/Te is 100. In other words, we can conclude that the time 7(0) of transmitting
an empty message will be only 2 times less than the time T,.(100) of transferring
100 numbers of the type ‘double’.

Figure |2 presents the results of comparing the experimental data with the
theoretical ones, calculated from . The measurement data are statistically
reliable: the average statistical deviation for most measurements is less than
1-5% for 10 repetitions of the test described. In Fig. it can be seen that
the theoretical curve practically coincides with the experimental data, which
indicates the rationality of the assumptions made regarding the transmission
rate, in spite of the significant rounding-off of the constants 7.

It is interesting to note that in Fig. [2b some retardation of transmission rate
is observed when using a too long messages. This is probably related to the size
of the internal buffers of the MPI library, which is selected when it is installed.
In addition, for small messages with L. < 14, the data transmission rate on
one computing node is in most cases slightly more than for two nodes, and for
L. > 14, on the contrary. On average, the difference is about 10%. Probably,
this effect is related to the specifics of MPI implementation and configuration of
the nodes from the ‘x6core’ segment.

189

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

8 1. Konshin
Tc theory Tc
06 |
05 |
04
0.3
02 |
01 b
L e 0 L L L L
0 5 10 15 20 25 0 5 10 15 20 25
log(Lc) log(Le)
(a) (b)

Fig.2. The total time for sending a message of 22° double words by portions
of length L.. A theoretical estimate from and actual calculations in the
‘x6core’ segment.

7 Estimation Refinement and its Usage for the
Mathematical Physics Algorithms

Taking into account , we write down the time of data transmission:
T. =n.70/q + 7L, (14)

where L., as before, denotes the total length of all communications per proces-
sor, ¢ is the number of overlapping subdomains (the necessary exchanges are
performed once per ¢ time steps), and n,. is the total number of communications
per each processor. Note that in most algorithms n. usually does not modified
with increasing number of processors p.

We write down the time spent on arithmetic operations as follows:

T, = (1 + Q)TaLaa (15)

where L,, as before, denotes the total number of arithmetic operations performed
per one processor, the new parameter) expresses the proportion of the increase
in the number of arithmetic operations, if the duplication of some arithmetic
operations was performed. This duplication may be due to attempt of reduce
the number or length of communications. If, as in the previously considered
algorithms, there is no duplication, then @ = 0 and the formula goes into
the previously used one T, = 7,L,, while if the computations are duplicated,
then @) takes some small positive value, depending on the algorithm features.
Using and in estimating the algorithm speedup, we obtain

S§=5(p,70,Q) =T(1)/T(p) =Ta(1)/(Ta(p) + Tc(p))
= TaLa/((1 + Q)7aLa/p +net0/q + TeLe /D)
=p/(L+7L+Q +pncro/(qTaLa))- (16)

190

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

Algorithms Efficiency Estimation 9

Here, as before in formulas and , the values 7 and L mean the parallelism
characteristics of the computer and the algorithm, respectively, while their prod-
uct in the denominator characterizes the decrease in the efficiency due to data
exchanges. The value @, if it is different from 0, expresses the loss of speedup
due to duplication of calculations; and the ratio of the delays in initializing of n.
transmissions (n.7p/q) to the execution time of arithmetic operations on each
processor (7,L,/p) contributes to the speedup loss due to message initialization.
The value 79, involved in the estimate , can be calculated rather accurately,
as it was done in .

Let us turn again to the mathematical physics algorithms to estimate the
remaining unknowns in . The number n. of data transmissions per one time
step will be equal or proportional to the number of subdomains connected to the
specific processor. In the simplest case, in the notation of Section [3} depending
on the method of decomposition of the domain D, we can take n. = 2D.

Suppose now that instead of one layer of neighboring cells, we want to ex-
change ¢ layers of cells at once, in order to perform exchanges in ¢ times less
often. This can lead to some reduction in the calculation time due to a decrease
in the transmission initialization time, although it leads to some duplication
of calculations. The total length of each transmission will increase by ¢ times
to qL., although the total length of transmissions for ¢ time steps will remain
practically unchanged. Note that duplicated computations will be performed at
(g — 1) time steps exactly in the cells that participated in the transmissions,
in this case the number of additional arithmetic operations being L.q(q — 1)/2.
Thus, the estimate of the last unknown quantity in is obtained:

Q= 3q(q—1)Lc/La = 5q(q —1)L. (17)

Note that in the traditional ‘high-communication no-extra-computation’ scheme
(HCNC) without duplicating the calculations (i.e., for ¢ = 1), we get Q@ = 0.
The case ¢ > 1 corresponds to the ‘low-communication high-extra-computation’
scheme (LCHC) with @ > 0.

Remark 2. For further analysis of formula , suppose that the user is aimed
to avoid double duplication of computations (i.e. @ = 1) and the associated
double decrease in the computations efficiency, then it is sufficient to select the
value of ¢ not more than /2/L. Turn to formula (6), one can see that the same
efficiency drop can be observed for the case 7L = 1. Therefore, the previous
restriction can also be rewritten as ¢ < v/27. The computers encountered by the
author are usually characterized by the parameter 7 from the range from 10 to
30 (sometimes up to 100), therefore it is recommended to take ¢ < 5.

Returning to the speedup estimate and substituting the values derived into
, we obtain the final relation

S =p/(1+(mat+iq(g—1))2-2p~/P)DVC /PN 42DC ™ g pN 1),

(18)
where 7., = T = 7. /7, and 79, = T0/74 are denoted.

191

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

10 1. Konshin

The impact on the speedup of various quantities has already been discussed,
we note only that the computer-dependent quantity 7 = 7./7, contributes to
the second term of the denominator, and the ratio 79/7, is involved in the third
term. We also note that the second term increases with increasing of ¢, while
the third one decreases.

Remark 3. Rewriting in the form

S =p/(1+ (Tea + 2a(q —1))C1 + Cs),

(19)
Cy=(2-2p V/P)DVC1p/PN-Vd Cy =2DC~1q 'pN~'7y,)
we can take the derivative of S over ¢ to estimate the optimal overlap size. In
this way for S’(q) = 0 we obtain the cubic equation 2C;¢* — C1¢? — 20y = 0.
For ¢ > 1 there is only one root g, ~ (C1/Cs)*/3, or

@~ CJCy =20 YD NYd1 (20)

Substituting to some reasonable values D = d = 3, V = 5, p = 103,
N =105, and 79, = 10* we obtain ¢, ~ 3.

At the end of this section, it should be noted that the estimates @[) and
(18) can easily be generalized to the case of a region in the form of a rectangle
or a parallelepiped. In the case of complex shape regions and/or arbitrary data
distribution over processors, all the unknown values 7 = 7./7, and L = L./L,
can be easily calculated, for example, directly in the designed application just
before the computations.

8 Results of Numerical Experiments

In Section [] the specification of the computational cluster exploited for all nu-
merical experiments made in this paper. We now turn to the description of the
model problem to be solved.

As a model problem, the solution of the heat transfer equation in the d-
dimensional cubic region d < 3 with the same number of cells in each direction
was chosen. The cells in the computational domain were distributed over pro-
cessors in D dimensions, D < d. The overlap of subdomains in ¢ layers was
considered, which allowed only one stage of data exchanges for ¢ time steps. We
focus on the standard finite-difference discretization of the heat transfer equation
with an explicit scheme in time.

Figure [3| shows the results of computations for the model problem of dimen-
sion 100p x 100 x 100, d = 3, D = 1, p = 64, using the subdomain overlap of size
q=1,...,6. The number of time steps was equal to 120. It can be noted that the
minimal solution time is obtained for the case ¢ = 3, which is in full agreement
with the theoretical estimates made in Section [1

Figures |4] and [5| contain the results for two problems of dimension 432 x
432 x 432 and 512 x 512 x 512, respectively. We analyzed all possible one-,

192

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

Algorithms Efficiency Estimation 11

| N

0.5

0 L L L L L L q
0 1 2 3 4 5 6

Fig. 3. The solution time depending on the subdomain overlap size ¢ = 1, ..., 6.

N D1-iheow J— j ' ' ' N D1-iheory I
D2-theory D2-theory
D3-theory ——— D3-theory ———
16 | D1432 —— | 16 | D1-512 ——
D2-432 D2-512
D3-432 —»— D3-512 —s—
8 8
4+ | 4L
\/\/"V—«A\/ /
21 ¢ 1 2r / '
1 . : ‘ . : : Ap 1 : : : : : : Ap
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Fig. 4. Speedup for the 432 x 432 x Fig. 5. Speedup for the 512 x 512 x
432 problem for D =1,2, 3. 512 problem for D = 1,2, 3.

two- and three-dimensional (D = 1,2,3) distributions over processors, for all
variants of processor ratio, in which all subdomains have the same size. We
considered a conventional version with a minimum overlap of size ¢ = 1, with
120 time steps. Theoretical estimates based on formula give a slightly more
optimistic forecast of the algorithm speedup, but it is clear that the use of a
larger dimension for distribution over processors in most cases provides greater
speedup, as it follows from the theoretical estimates obtained in Sections[3and 7}

9 Conclusion

Constructive estimates for the algorithm parallel efficiency are obtained, which
include the characteristics of the parallelism of the computer and the paral-
lelism of the algorithm itself. In addition, the estimates are obtained that take
into account the transmission initialization time, as well as the ability to group

193

Cynepromnsromeprule Onu 6 Poccuu 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

12 1. Konshin

messages. For explicit discretization schemes applied to mathematical physics
problems, estimates are obtained that, in addition to the geometric parameters
of the problem and the type of cell distribution over processors, also include the
number of unknown functions per cell, as well as the number of arithmetic op-
erations per cell at one time step. The dependence of the message transfer rate
on message length is analyzed in detail, and also the expediency of performing
calculations at the same time as the asynchronous communications. For the sam-
ple heat transfer problem, a direct comparison of the experimental results with
the theoretical estimates on the parallel efficiency was performed. Confirmed
the conclusion about the profitability of using the higher dimension type of data
distribution over processors.

Acknowledgements. The theoretical part of this work has been supported by
the Russian Science Foundation through the grant 14-11-00190. The experimen-
tal part was partially supported by RFBR grant 17-01-00886.

References

1. AlgoWiki: Open encyclopedia of algorithm properties. URL: http:
//algowiki-project.org (accessed: 15.04.2018)

2. Voevodin V.V., Voevodin V1.V.: Parallel computing. BHV-Petersburg, St. Peters-
burg, 2002 (in Russian)

3. Gergel V.P., Strongin R.G.: Fundamentals of parallel computing for multiprocessor
computer systems. Publishing house of the Nizhny Novgorod State Univ., Nizhny
Novgorod, 2003 (in Russian)

4. Konshin I.N., Parallel computational models to estimate an actual speedup of
analyzed algorithm. In: Russian Supercomputing Days: Proc. of the Int. Conf.
(September 26-27, 2016, Moscow, Russia). Moscow State University, Moscow, 2016,
pp- 269-280 (in Russian) http://2016.russianscdays.org/files/pdf16/269.pdf

5. Konshin I., Parallel computational models to estimate an actual speedup of an-
alyzed algorithm. In: Vol. 687 of Communications in Computer and Information
Science (Ed. V1. Voevodin), Springer, 2017, 304-317

6. Konshin I.N., Parallelism in computational mathematics. International Summer
Supercomputer Academy. Track: Parallel Algorithms of Algebra and Analysis
and Experiments of Supercomputer Modeling. MSU, Moscow, 2012. URL:
http://academy2012.hpc-russia.ru/files/lectures/algebra/0704_1_ik.pdf
(accessed: 15.04.2018) (in Russian)

7. INM RAS cluster. URL: http://cluster2.inm.ras.ru (accessed: 15.04.2018) (in Rus-
sian)

8. MPI: The Message Passing Interface standard. http://www.mcs.anl.gov/
research/projects/mpi/| (accessed: 15.04.2018)

9. Bajdin G.V.: On some stereotypes of parallel programming. Vopr. Atomn. Nauki
Tekhn., Ser. Mat. Model Fiz. Prots., 2008, No. 1, 67-75 (in Russian)

194

http://algowiki-project.org
http://algowiki-project.org
http://2016.russianscdays.org/files/pdf16/269.pdf
http://academy2012.hpc-russia.ru/files/lectures/algebra/0704_1_ik.pdf
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/

