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Abstract. The work is aimed at solving the urgent problems of modern high-

performance computing. The purpose of the study is to increase the speed, ac-

curacy and reliability of mass arithmetic calculations. To achieve the goal, au-

thor's methods of performing operations and transforming data in the prospec-

tive residue logarithmic number system are used. This numbering system makes 

it possible to unite the advantages of non-conventional number systems: a resi-

due number system and a logarithmic number system. The subject of study is a 

parallel-pipelined coprocessor implementing the proposed calculation methods. 

The study was carried out using the theory of computer design and systems, 

methods and means of experimental analysis of computers and systems. As a 

result of the research and development new scientific and technical solutions 

are proposed that implement the proposed methods of data computation and 

coding. The proposed coprocessor has high speed, accuracy and reliability of 

processing of real operands in comparison with known analogs based on the 

floating-point positioning system. 

Keywords: Logarithmic Number System, Residue Number System, Residue 

Logarithmic Number System, Performance, Accuracy, Reliability. 

1 Introduction 

It is well known that the decimal number system significantly simplified the calcula-

tions. This served as a revolutionary impetus for technological progress. After the 

invention of infinite decimal fractions, it acquired the status of a universal number 

system. The binary number system is the basis of modern technological progress. The 

areas of its application are computer facilities and information technology. To date, 

they are implemented on the basis of nanoelectronics. 

The development of technological progress stimulates both the growth of the co m-

putational need and the improvement of computations in solving new problems. For 

example, the development of astronomy and navigation in the 16th century stimulated 

the growth of computational needs. As a result, the logarithm appeared, as a means of 

reducing the complexity of multiplicative operations. 
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The rapid growth of computing needs in the XX century has aggravated new pro b-

lems in the field of computing technologies. The key ones are: 

─ acceleration of calculations due to the parallelism of programs and machine codes, 

streaming calculations; 

─ fault tolerance due to self-correction, i.e. detection and correction of errors in the 

calculation process, including for systems of long-term autonomous existence; 

─ the accuracy of real calculations in a limited machine bit capacity. 

However, their effective solution is almost impossible at the level of computer 

codes of traditional arithmetic. The reason is the inter-digit relationship of positional 

numbers. Redundancy is used to improve the reliability of the calculations. Its draw-

back is a multiple increase in hardware costs. To work with real numbers, the de facto 

standard is the floating point [1] 
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where sign is the sign of the number, 2
E-bias

 is the exponent with bias as 127 for single 

precision and 1023 for double precision, M is the mantissa in the normalized form, 

and f is the width of the mantissa. In this case, rounding in the calculation process 

reduces the accuracy of calculations. As a result, this can lead to an erroneous result 

of the calculations.  

The mentioned problems concern all known universal processors available in the 

market of high-performance computing. Solutions of leading companies Intel, AMD, 

NVIDIA and several others are based on positional floating-point arithmetic. Thus, to 

effectively solve the above problems, the development of a new computer account 

system is urgent. 

One of the applicants is the residue logarithmic number system [2]. It combines 

two-level coding of numbers. One of the levels is the residue number system (RNS) in 

the basis of modular arithmetic. Another level is the logarithmic number system 

(LNS). The subject of study is a parallel-pipelined coprocessor implementing the 

proposed calculation methods. As a result of the research and development new scien-

tific and technical solutions are proposed that implement the proposed methods of 

data computation and coding. Let us consider them in more detail. 

1.1 Residue number system 

The foundations of modular arithmetic were proposed more than half a century ago. 

Scientific papers by I.Ya. Akushsky, D.I. Yuditsky, N.I. Chervyakov, V.S. Knyazkov, 

Garner H., Omondi A. are devoted to this direction [3-6]. 

The objectives of transition to RNS are: 

─ to increase the speed of residue operations (addition, multiplication) due to the 

parallel processing of each digit of a number from the basis of modules 

{p1,p2,...,pn}; 

─ to increase the reliability of calculations due to self-correction of machine codes 

when the basis is extended by the control modules {p1,p2,...,pn+k}; 
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where n and k  are the numbers of bases of the main and reference ranges, respective-

ly. To date, there are very few completed technical solutions that operate with the use 

of RNS. One of them is a modular processor, which operates on the basis of artificial 

neural networks. It was developed in Stavropol, Russia in 2005 [3]. 

The limiting factor is the slow (sequential) execution of non-residue operations. 

They are: 

─ division, and hence, scaling; 

─ formation of an overflow indication; 

─ translation from one number system to another. 

The previous work was aimed at the research on high-speed devices for the effi-

cient execution of non-residue operations. They are based on integer parallel-

pipelined processing of bit-slices of operands [7]. 

In general, the presence of non-modular operations makes it difficult to use a float-

ing point. There are some works in which the RNS is adapted to frequent scaling and 

rounding. One of possible approaches is the use of interval positional characteristics 

[8]. Its disadvantage is the iterative scaling. This has a negative effect on the speed of 

arithmetic operations. 

However, it is possible to fix the point, providing a wide range of representation of 

numbers. It will be discussed further. 

1.2 Logarithmic number system 

In the logarithmic number system (LNS), the real number of the field R is represented 

by its logarithm along a fixed base. Moreover, the arithmetic operations are isomo r-

phic to the operations of the field R. The interest in the use of LNS in computers first 

appeared in the late XX century. A fundamental contribution to the study of LSS was 

made by J. Coleman, M. Arnold, E. Chester, D. Lewis [9-12]. The goal of transition 

to the LNS is: 

─ to increase the speed of multiplicative operations (multiplication, division, raising 

and root extraction) of the R field; 

─ to increase the accuracy of calculations by fixing a point separating the integer and 

the fractional part of the number. 

The latter allows us to use LNS as an alternative to floating-point calculations. This 

ensures a similar range of representation of numbers in the allocated bitmap of the 

machine number 
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where E is the exponent, M is the mantissa in the normalized form, and f is the width 

of the mantissa. 

Despite the rather extensive volume of studies performed, there are only a few 

completed technical implementations to date. One of them is the European Logarit h-

mic Microprocessor [9]. It has a 32-bit RISC architecture. 
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The reason for this is the slow performance of additive operations. They are ex-

pressed through multiplicative operations  

 ),21(loglog)(log 22 loglog

222

ab
aba


  (3) 

where a and b are operands and a < b. The reason for limiting the single precision is 

the complexity of the conversion from the traditional number system and back. This 

fact leads to an exponential increase in the hardware costs of code converters. 

The methods of converting numbers, based on the author's research [13], helped to 

eliminate this drawback by using multilevel interpolation. On the other hand, the use 

of specialized technical solutions contributed to an increase in the speed of additive 

operations. 

Summing it up, fixing a point in the LNS allows us to work with a real operand the 

same as with an integer. This allows us to combine its advantages with RNS, thus 

forming a residue logarithmic number system (RLNS). Let us briefly describe its 

features. 

2 Residue logarithmic format and related work 

In the introduction it was established that the application of RLNS is actual for solv-

ing the problems of modern arithmetic devices in terms of increasing the speed, the 

accuracy and the reliability of real calculations. 

In simplified form, the translation of the real positional number into a residue loga-

rithmic format takes place in three stages: 

─ the base 2 logarithm is calculated from the original real number;  

─ the point separating the integer and fractional part of the logarithm is discarded; 

─ the received integer number is converted to the RNS. 

An example of converting a double-precision number is shown in Fig. 1. 

Sign S Integral Part Fractional Part

051526263

Logarithmic number system

Sign S mod(215-1)

Residue number system

01563

mod(216-1) mod(216) mod(216+1)

163132474862

Sign S Characteristic E Mantissa M

Real number (IEEE-754)

051526263

 

Fig. 1. Converting a double-precision number to RLNS 
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RLNS integrates implementation advantages both of logarithms: 

─ multiplicative operations are replaced by additive ones; 

─ the absence of rounding in the performance of multiplicative operations;  

and of the residues of numbers: 

─ parallel calculation of each digit of a number; 

─ auto correction of machine codes. 

It is obvious that this also accumulates disadvantages: 

─ the need to convert numbers first in the LNS, then into the RNS; 

─ the speed of additive operations depends on the speed of the code converters. 

Consequently, the classes of computational tasks, where the successes of the RLNS 

can be achieved are as follows: 

─ the number of additive operations is commensurable with the number of multipli-

cative operations,  for example, calculation of polynomials, fast Fourier transforms, 

solution of systems of linear algebraic equations, etc.;  

─ critical dependence on rounding in ill-conditioned problems, the problems with 

different-scale coefficients, and also the ones sensitive to the class of equivalent 

transformations; 

─ highly reliable real-time systems, for example, missile guidance, management of a 

nuclear power station, space vehicles  operation, etc. 

It is worth noting the difference between RLNS and residue logarithmetic  [3]. In 

the latter, the RNS is combined with discrete logarithms. This leads to the preserv a-

tion of the scaling problem. In contrast, the RLNS allows us to process numbers with 

a fixed position of a point. 

The founder of the RLNS is M.G. Arnold. He described the basic capabilities of 

this number system and proposed a software implementation [1]. However, RLNS did 

not receive its further development. The accuracy of the numbers was limited to 32 

bits. The calculations were adapted to the implementation on general purpose proces-

sors. All these negated the advantages of applying known solutions. It is obvious that 

theoretically basics of computing in the RLNS are currently  investigated insufficient-

ly. There are practically no hardware implementations that operate on its base. 

So, the previous work was aimed at creating a set of methods describing residue 

logarithmic computations a general form [14-16]. These methods are aimed at its 

high-speed parallel-pipelined technical implementation, also mentioned in [14-16]. 

The proposed methods and devices based on them relate to high -speed execution of 

operations in RLNS, as well as conversion of numbers into a residue logarithmic fo r-

mat and back. The maximum speed of operations in them (one clock cycle) is 

achieved by mass arithmetic processing. This condition is necessary to fill the comp u-

tational pipeline with a data stream. The conducted research and development made it 

possible to create a basis for the operation of the arithmetic coprocessor. The features 

of its organization are discussed below. 
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3 Organization of a residue logarithmic coprocessor 

In this section, a device operating on the basis of RLNS is considered. It integrates the 

entire previous work of the author, allowing us to maximize the benefits of this nu m-

ber system at the hardware level. The use of the device as a coprocessor makes it 

possible: 

─ to simplify the internal control device as much as possible;  

─ to transfer for calculation only a part of the tasks that can be solved most effective-

ly using the residue logarithmic approach. 

Fig. 2 shows the structural scheme of the relationship with a universal processor 

based on shared memory. The advantage of this approach is the lack of a mechanism 

for memory coherency and simplification of the relationship between the processor 

and the coprocessor. 

General-purpose 

Processor

Random Access 

Memory

Residue Logarithmic 

Coprocessor

DMA DMA

Input Output

 

Fig. 2. The structural scheme of the relationship with a universal processor 

Fig. 3 shows the structural scheme of the coprocessor in its general form. Each co m-

putational core of the coprocessor performs independent processing on a particular 

residue. Arithmetic operations can be performed in both vector and scalar forms. 

Random Access 

Memory
A code converter

RLNS 

Core 1

RLNS 

Core 2

RLNS 

Core n
. . .

 

Fig. 3. The structural scheme of the coprocessor in its general form 

In general, the number of cores is equal to the number of bases of the main and  con-

trol range of the RLNS. Their maximum number is limited only by hardware costs. 

The adder and the multiplier are provided for processing multiplicative operations in 
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the computational core. Their width corresponds to the width of the base on which the 

processing is performed. 

The architecture of the coprocessor is discussed in more detail in [17]. The cores 

are connected to a parallel-pipeline code converter. The method and the code convert-

er device are given in a general form in [15, 16]. 

The difference from the arithmetic devices of known universal processors lies in 

the following as: 

─ scalar values without pipelining, which increases the speed of calculations;  

─ noiseless encoding of operands, which allows automatic error correction;  

─ when performing multiplicative operations there is no rounding operation, and that 

increases the accuracy of calculations. 

Further the coprocessor is compared with the known analogs. 

4 Technical implementation and evaluating the parameters of 

the coprocessor 

The structural schemes described in the previous section are implemented at the func-

tional level using the Verilog hardware programming language. Debugging is per-

formed using Altera Cyclone V programmable logic integrated circuit (FPGA). 

At the moment, the residue logarithmic coprocessor is implemented as a stand-

alone intellectual property (IP) block. Such blocks are complete components for crea t-

ing systems-on-a-chip, for example, microprocessors. Hardware costs of the IP-block 

are about 20 million transistors, that is comparable to the block expansion of Intel 

Xeon AVX2 processors Broadwell generation [17]. 

The following are the estimates of the speed, the accuracy, and the reliability of 

computations using RLNS in comparison with the traditional approach. 

4.1 Performance 

Table 1 compares the performance of the residue logarithmic coprocessor (RLC) with 

the Intel AVX2 extension of the Broadwell generation. Precision of the operand co r-

responds to a double-precision IEEE-754 standard. 

Table 1. Comparison of RLC and Intel AVX2 performance. 

Vector operation 
RLC, clock cycles AVX2, clock cycles 

Latency Throughput Latency Throughput 

Addition 6 1 3 1 

Subtraction 6 1 3 1 

Multiplication 1 1 3 0,5 

Division 1 1 16-23 16 

Exponentiation 1 1 288 270 

Square root 1 1 19-35 16-27 
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The numbers are packed into vectors with a dimension of 8 elements. It is assumed 

that the conversion to RLNS and back is performed once at the beginning and in the 

end of the task. This does not introduce significant time delays into the computational 

process due to pipelining. 

Latency and throughput of the arithmetic operation pipeline in Intel AVX2 

(Broadwell generation) is taken from Intel 64 and IA-32 Architectures Optimization 

Reference Manual [18]. 

The greatest acceleration is achieved in the proposed coprocessor when using mul-

tiplicative operations. For example, for raising to the power operations, the difference 

is three orders of magnitude in favor of the coprocessor, which is explained by the 

lack of hardware implementation of these operations in Intel coprocessors. 

At the same time, slow additive operations are performed with twice the latency, 

but the same throughput (1 clock cycle per operation). One-step execution of vector 

operations multiplication, division and exponentiation makes it possible to obtain a 

significant advantage in speed of execution of a certain class of tasks, where such 

operations prevail. These include the calculation of polynomials of n-th power, for 

example, Taylor series expansion, matrix multiplication and a number of others. 

4.2 Accuracy of calculations 

One of the options for comparing the accuracy of calculations is the problems of n u-

merical analysis. For example, Laguerre's method is a root-finding algorithm tailored 

to polynomials. In other words, Laguerre's method can be used to numerically solve 

the equation p(x)=0 for a given polynomial p(x). The average relative error of calcula-

tions is 25% less compared to the traditional type of computation (see Fig. 4).  

 

Fig. 4. Accuracy of calculations 
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This equation has the known analytical solution and, hence, it is possible to calculate 

a relative error of the solution numerically obtained in the floating-point arithmetic. 

The experiment is carried out for n[1,10], where n is the degree of the polynomial. 

The RLNS error does not exceed half the last significant digit when n=10. The re-

sult will be exact. While for a floating point, the effect of the error will spread to the 

last digit of the result, which will cause the error to accumulate. This allows us to 

conclude that the accuracy of the calculations in the RLNS is higher. 

4.3 Reliability assessment 

To assess the fault tolerance of RLC, it is advisable to use the availability indicator 

 ,
N

H
  (4) 

where H is the number of operational states of the system in case of failure and N is 

the total number of possible states [5]. 

This indicator allows us to evaluate the effectiveness of the application of correc-

tive codes. Their use makes it possible to increase the coprocessor's fault tolerance in 

comparison with the quorum - the classic approach of masking failures "2 of 3"  [3]. 

The use of three control bases allows us to correct all double errors with an in-

crease in hardware costs by 75% (4 modules require 3 control modules). The tradi-

tional approach has a smaller margin of efficiency (see Fig. 5) with an increase in 

hardware costs by 300% (quorum need triple hardware costs). 

 

Fig. 5. Reliability assessment 
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5 Conclusion 

The analysis of the problems of modern high-performance computing presented in 

this article has revealed difficulties in further improving the characteristics without 

introducing changes on the fundamental level of the principles of computation. 

One possible solution is the use of forward-looking residue logarithmic number 

system. 

Its advantages allowed us to improve the technological capabilities of specialized 

arithmetic devices. 

In particular: 

─ multiplicative operations on each base have the same hardware structure, that is, 

they consist of the same set of simple blocks; 

─ the computational element is universal within a set of the same types of bases, 

which is the basis for building highly reliable schemes; 

─ the code lag is realizable both at the level of a separate computational element and 

a modular code in general, which opens prospects for the development of highly 

reliable computing structures. 

The coprocessor considered in this paper functions on the basis of RLNS. To elim-

inate the disadvantages of non-traditional numbering systems associated with the slow 

implementation of non-modular (in the part of the RNS) and additive (in the part of 

the LNS) operations special methods and parallel-pipelined devices based on them 

were developed. 

All this allowed us to increase the speed, the accuracy and the reliability of mass 

arithmetic calculations at a comparable level of hardware costs. 

Future work will be focused on testing the applicability of the coprocessor using 

for different classes of applied problems. It is possible to provide some evaluated 

results on synthetic benchmarks and compare it to general purpose processor. 
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