
Parallel FDTD Solver with Static and Dynamic
Load Balancing

Gleb Balykov

Lomonosov Moscow State University, Moscow, 119991, Russia
balykov.gleb@yandex.ru

Abstract. Finite-difference time-domain method (FDTD) is widely used
for modeling of computational electrodynamics by numerically solving
Maxwell’s equations and finding approximate solution at each time step.
Overall computational time of FDTD solvers could become significant
when large numerical grids are used. Parallel FDTD solvers usually help
with reduction of overall computational time, however, the problem of
load balancing arises on parallel computational systems. Load balanc-
ing of FDTD algorithm for homogeneous computational systems could
be performed statically, before computations. In this article static and
dynamic load balancing of FDTD algorithm for heterogeneous compu-
tational systems is described. Dynamic load balancing allows to redis-
tribute grid points between computational nodes and effectively manage
computational resources during process of computations for arbitrary
computational system. Dynamic load balancing could be turned into
static, if data required for balancing was gathered during previous com-
putations. Measurements for presented algorithms are provided for IBM
Blue Gene/P supercomputer and Tesla CMC server. Further directions
for optimizations are also discussed.

Keywords: Computational Electrodynamics · FDTD · Parallel FDTD
· MPI

1 Overview

The FDTD method, originated in 1966 [1], is widely used in electrodynamics
solvers. Since then, sequential FDTD solvers evolved to high-performance par-
allel solvers, which incorporate different parallelization techniques.

Load balancing in parallel FDTD algorithms could significantly impact over-
all performance, as it allows to efficiently distribute load across all computa-
tional nodes of computational system based on their performance and current
parameters of computation [2] [3]. For homogeneous computational systems load
balancing could be performed before the start of computation, which is described
in our previous work [4]. In general, for heterogeneous computational systems,
characteristics of each computational node should be taken into account, because
all computational nodes may have different (in general, arbitrary) performance
and share time between each other.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

410

2 Gleb Balykov

Different load distributions across computational nodes of the computational
system could be chosen as the most efficient based on these performance param-
eters. For example, it could be more efficient to assign different number of grid
points to different computational nodes, or it could be more efficient to disable
some computational nodes in order to exclude heavy share operations. One ex-
ample of such computational systems could be the computational system with
GPU only on a single computational node, performance of which is higher than
the performance of other computational nodes.

This also applies to the current parameters of computations, as they could
also lead to different load distributions. One example could be the case, when
with specified number of grid points it is more efficient to perform computations
sequentially on a single computational node rather than spread computations
across all computational nodes.

One group of approaches for dynamic load balancing for heterogeneous com-
putational systems is based on measurements of execution time of each com-
putational node, after which migration of tasks from one node to another is
performed [5] [6]. This approach should be updated with specifics of algorithm
it is applied to in order to achieve the best balancing properties. Also, migra-
tion could be a heavy operation, especially when data is transferred between
computational nodes with low bandwidth.

Another popular approach for dynamic load balancing is ”work stealing” [7]
[8]. In the core of this and similar approaches lies queue of tasks, which are to
be performed. Each computational node takes element of this queue, performs
computations on it, and then takes the next element from queue if it’s not empty.
This will balance computations across all computational nodes on granularity
of the single element of queue, because faster node will finish its computations
faster than slower one, i.e. faster node will take the next element of queue. Queues
could exist for each computational node separately, then, faster computational
node can ”steal” element from queue of the slower one.

Work stealing approach should be used cautiously, because choice of queue
element could significantly impact overhead and balancing abilities of algorithm.
Even for systems with shared memory incorrectly chosen granularity could lead
to non-optimal balancing, for example, when there are less queue elements than
overall number of computational nodes. For systems with distributed memory
this problem is combined with the problem of data locality, because for many
numerical algorithms data from neighboring grid points is required. This means
that faster computational node may be unable to steal anything from the slower
node without performance degradation.

In this article, parallel FDTD solver with static and dynamic load balancing
for heterogeneous computational systems is introduced [9], which incorporates
dynamic balancing of computations between computational nodes for different
dimensions and different virtual topologies. Characteristics of each computa-
tional node are identified dynamically, during computations, and load balancing
is performed based on them. This dynamic data could be saved to disk and then
used for static balancing on this same computational system even for different

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

411

Parallel FDTD Solver with Static and Dynamic Load Balancing 3

computation parameters. Presented algorithm allows to preserve good data lo-
cality over all computational nodes, because it takes into account properties of
FDTD algorithm. Besides, dynamic balancing overhead can be removed fully if
only static part of balancing is performed.

2 Parallel Algorithm Description

Electrodynamics modeling could be performed in one-dimensional (1D), two-
dimensional (2D) or three-dimensional (3D) modes. For all dimensions Cartesian
computational grid is introduced: Ox axis for 1D mode, Ox and Oy axes for 2D
mode, Ox,Oy and Oz axes for 3D mode. Yee grid [10] for field components is
then set, and all points of Yee grid are spread between all computational nodes,
so that each point of Yee grid is assigned to some computational node. For
sequential solver all Yee grid points remain on the single computational node.

Let N be the number of computational nodes used in computations. Let’s
consider it being specified by user of the solver at start of computations. Let S
be the total number of Yee grid points and let T be the total number of time
steps, which are also specified at start of computations by user.

Yee grid points are assigned to different computational nodes in a natural
way: Yee grid is divided in rectangular chunks, which are then assigned to dif-
ferent computational nodes. All N computational nodes are considered to have
buffers, which store data from the neighboring computational nodes. This com-
putational nodes’ layout could be mapped directly on MPI virtual topology with
single MPI process launched on every computational node.

Each time step each computational node performs computations for Yee grid
points from the chunk assigned to it and then performs share operations with
the neighboring computational nodes. Let’s consider only buffers of size 1 by
the axis for which each buffer is defined, then, no additional computations are
performed for buffer points.

Overall computational time τtotal is sum of computational time and share
time for each time step τ ttotal, and only the maximum time for each time step
is taken into account. As described in [4], share operations are performed in all
available directions sequentially, one after another (for example, for 2D case there
are 8 directions). τ tcalc is the computational time, τ tshare is the sum of maximum
share times for all directions on time step t.

τtotal =

T−1∑
t=0

τ ttotal =

T−1∑
t=0

(τ tcalc + τ tshare) (1)

τtotal =

T−1∑
t=0

(
N−1
max
i=0

τ tcalci +
∑
dir

max
i,j∈dir

τ tsharei,j) (2)

As also stated in [4], there are several possible virtual topologies for each
dimension. Each topology has its own set of directions, and both computational

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

412

4 Gleb Balykov

time and share time should be minimized in order to minimize total execution
time τtotal .

Let St
i be the number of Yee grid points assigned to i computational node at

time step t, i = 0, .., N − 1, t ≥ 0. Number of grid points assigned to i compu-
tational node may change as computations proceed. Process of load balancing,
or grid balancing, distributes computations between computational nodes based
on their performance parameters.

S =

N−1∑
i=0

St
i ,∀t ≥ 0 (3)

Let U t
i,j be the number of grid points that are shared between i and j com-

putational nodes at time step t, i, j = 0, .., N − 1, t ≥ 0. If computational nodes
i and j do not performed any share operations between each other at time step
t, U t

i,j = 0. Besides, St
i = 0 for nodes which are disabled on time step t.

Let stateti be the state of i computational node on time step t. In case com-
putational node i is disabled on time step t, stateti = 0, otherwise stateti = 1.
There should exist at least one computational node j for each time step t, for
which statetj = 1.

Let perf ti be the performance of i computational node right before the time
step t, in other words, number of grid points, on which operations were per-
formed, divided by elapsed time. In order to increase accuracy of balancing, let’s
calculate perf ti as average values for all previous time steps. In this case, the
longer computations are running, the more accurate values of performances are
obtained.

Let Tperf be the number of time steps, after which performance values are
updated. Then, right before time step t = l ∗ Tperf , l = 0, 1, .., T/Tperf :

perf
l∗Tperf

i =
Tperf ∗

∑l−1
v=0 S

v∗Tperf

i∑l∗Tperf−1
v=0 τvcalci

(4)

S
v∗Tperf

i = S
v∗Tperf+k
i , U

v∗Tperf

i,j = U
v∗Tperf+k
i,j (5)

where k = 1, .., Tperf − 1, v = 0, .., l − 1. τvcalci = 0 if computational node i
is disabled on time step v. If no previously computed data is loaded from file,
perf0i = 0, and computations are spread evenly between all computational nodes.
Computational overhead of balancing could be minimized by tuning values of
parameters Tperf based on the values of T and S.

2.1 1D case

Let A > 0 be the size of Yee grid by Ox axis, with ati grid points assigned to i
computational node on time step t: S = A, St

i = ati, i = 0, .., n − 1, t = 0, .., T .
Let n be the number of computational nodes, between which Ox axis is spread.
For one-dimensional case N = n.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

413

Parallel FDTD Solver with Static and Dynamic Load Balancing 5

Let xtLi
and xtRi

be the start and end coordinates of chunk assigned to i
computational node on time step t, xtL0

= 0, xtRi
= xtLi+1

, xtRn−1
= A, xtRi

−
xtLi

= ati.
In one-dimensional case all computational nodes have same buffer sizes buf ,

which means that no matter how computations are spread between computa-
tional nodes, buffer sizes remain the same. Then, if computational nodes i and j
do not perform share operations at time step t, U t

i,j = 0, otherwise, U t
i,j = buf .

Share time between i and j computational nodes could be estimated using
Hockney [11] communication model:

τh(i, j, x) = latencyi,j +
x

bandwidthi,j
(6)

where x - is the number of grid points, which are shared between i and j com-
putational nodes, latencyi,j is the time required to setup the sharing procedure
between i and j computational nodes, bandwidthi,j is the speed of communica-
tion between i and j computational nodes.

Let τ tsi,j (x) be the measured average share time between i and j computa-
tional nodes for x grid points for time steps t − Tperf , .., t − 1. For each num-
ber of grid points x there could be different amount of performed share itera-
tions Dt

i,j(x), by which the average value is taken. For in-process measurements

Dt
i,j(U

t−Tperf

i,j) = Tperf , for additional measurements Dt
i,j(x) could vary based

on the overhead of such measurements.
Then, for in-process measurements, i.e. for measurements, which were taken

during computations:

τ tsi,j (U
t−Tperf

i,j) =

∑t−1
v=t−Tperf

τvsharei,j

Dt
i,j(U

t−Tperf

i,j)
(7)

Latency could be obtained by performing additional measurements of share

time τ tsi,j (0) for empty messages or share time τ tsi,j (x) for sizes x 6= U
t−Tperf

i,j .

Another option is to choose τ tsi,j (1) as latency, as 1 << bandwidthi,j .

Linear regression for all the measurements τ tsi,j (x) is used to determine la-
tency and bandwidth. Also, in order to increase accuracy, latency and bandwidth
are calculated as average values for all time steps. Share time τ tsharei,j for the
next time step t then could be estimated using Hockney model.

Spreading computations. In case perf0i , ∀i are equal to 0, computations are
spread evenly between all computational nodes. In case perf0i , ∀i are somehow
defined, grid points are spread proportionally to performances of computational
nodes. Let αt

i be the ideal number of grid points, which could be assigned to
i computational node on t time step, based on performance of computational
node, αt

i ∈ R, αt
i ≥ 0. αt

i could be non-integer, in this case integer value to
assign to ati has to be calculated.

Let ItLi
and ItRi

be the start and end coordinates of ideal chunk, which could
be assigned to i computational node on time step t, ItL0

= 0, ItRi
= ItLi+1

,

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

414

6 Gleb Balykov

ItRn−1
= A, ItLi

, ItRi
∈ R. Ideal number of grid points αt

i is calculated in the next
manner:

αt
i = A ∗ perf ti ∗ stateti∑n−1

v=0 perf
t
v ∗ statetv

, i = 0, .., n− 1, t ≥ 0 (8)

The goal is to choose ati having the lowest deviations from ideal values αt
i.

For computational node i = 0 left border is always the same. As calculation time
on i computational node is proportional to the number of grid points assigned
to it, there are only two candidates for xtR0

: [ItR0
] and [ItR0

] + 1, because they
have the lowest deviation from the ideal value ItR0

.
Let δtLi

be the deviation of xtLi
from the ideal left border value ItLi

, same for
δtRi

and ItRi
: xtgi = Itgi − δ

t
gi , g ∈ {L,R}, i = 0, .., n− 1.

Also let δti = ItRi
− [ItRi

]. Algorithm consists of the following steps:
1. Update δtLi

: δtL0
= 0, for other computational nodes: δtLi

= δtRi−1
.

2. Update δtRi
for computational nodes i = 0, .., n− 1: δtRn−1

= 0

a) δtRi
= δti , if |δtLi

− δti | ≤ |δtLi
+ 1− δti |

b) δtRi
= δti − 1, otherwise

3. Update xtLi
, xtRi

, ati for computational nodes i = 0, .., n − 1 according to
the formulas above. i computational node is disabled if ati = 0 .

Both directions (from start to end and from end to start) should be checked
and the minimum between them should be chosen. This algorithm allows us to
choose integer values of ati, which are the closest to the ideal values αt

i, and these
values lead to the lowest τ tcalc.

Disabling computational nodes. In some cases it could be more efficient to
disable some computational nodes at time step t in order to decrease overall
computational time by decreasing τ tshare. For 1D case there are two possible
directions (positive and negative across Ox axis), and total share time is next:

τ tshare = 2 ∗ N−2
max
i=0

τ tsharei,i+1
(9)

Let’s consider connections between computational nodes across Ox axis,
starting from the connection with the highest share time between i and i + 1
computational nodes. perf tall is performance of all enabled computational nodes
at time step t, perf tR = perf tall − perf tL and

perf tL =

i∑
j=0

perf tj (10)

There are next possibilities.
1. Disable all computational nodes to the left or to the right from the border

between i and i+ 1 computational nodes, if computational time on this reduced
set of computational nodes is lower. The next condition checks if total computa-
tional time on computational nodes 0, .., i is less than total computational time
on 0, .., N − 1 (i.e. condition for disabling nodes i+ 1, .., N − 1):

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

415

Parallel FDTD Solver with Static and Dynamic Load Balancing 7

τ tcalcL + τ tshareL < τ tcalcall
+ τ tshareall

− ε (11)

As the border with the highest share time is considered, τ tshareall
> τ tshareL .

Similar condition could be written for disabling computational nodes 0, .., i. Ac-
curacy ε is the parameter, which helps to deal with inaccuracies of computations
of performance parameters. In case Yee grid points are spread between all com-
putational nodes proportionally to performance, computational and share time
could be estimated in the next manner:

τ tcalcL ≈
S

perf tL
(12)

τ tshareL = 2 ∗ i−1
max
j=0

τ tsharej,j+1
≈ 2 ∗ i−1

max
j=0

(latencytj,j+1 +
U t
j,j+1

bandwidthtj,j+1

) (13)

2. Disable K computational nodes to the left or to the right from the border
between i and i + 1 computational nodes, in case computational time on these
reduced sets of computational nodes is lower.

For this case additional measurements have to be performed for share op-
erations, which have not been performed yet, otherwise, share time can’t be
estimated.

Let’s check the case of disabling K computational nodes to the left from the
border between i and i + 1 computational nodes. There are i + 1 cases for K
from 1 to i+ 1, i.e. cases for disabling computational nodes from i−K + 1 to i.
From all values of K the one with the smallest computational time is chosen.

perf t1 =

i−K∑
j=0

perf tj +

N−1∑
j=i+1

perf tj (14)

The condition for disabling computational nodes from i−K + 1 to i is next:

τ tcalc1 + τ tshare1 < τ tcalcall
+ τ tshareall

− ε (15)

Computational and share time could be estimated as:

τ tcalc1 ≈
S

perf t1
(16)

τ tshare1 = 2 ∗max(
i−K
max
j=0

τ tsharej,j+1
,

N−1
max
j=i+1

τ tsharej,j+1
) (17)

3. Disable all computational nodes, except the one w with the highest per-
formance perf tw. This case could be checked once per rebalance. The disabling
condition is similar to previous cases considering 0 share time.

After all cases are checked, the resulting balancing is chosen, so that the
minimum computational time for all the cases is reached:

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

416

8 Gleb Balykov

τ ttotal = min(min
K

τ ttotal1 ,min
K

τ ttotal2 , τ
t
totalL , τ

t
totalR , τ

t
totalw) (18)

This process could be continued for the next highest share time between i
and i+ 1 computational nodes, until the conditions from all cases are no longer
satisfied or until all the pairs of neighbors are checked, or there is nothing else
to disable.

Enabling computational nodes. As performance parameters of computa-
tional nodes are measured dynamically, inaccuracies arise. This leads to the
case, when some computational nodes were disabled, performance parameters
were updated, and now it is more efficient to enable them. Partially, ε should
help with this. Other thing that should help to reduce inaccuracies is the accu-
mulated average values of performance parameters, so the further computations
continue, the more accurate values are obtained.

The conditions for enabling computational nodes are similar to the condition
for disabling, except that they are reversed:

τ ttotalL > τ ttotalall
+ ε (19)

Other conditions could be written in the same way. It would be inefficient
to check all combinations of computational nodes for each joint set of disabled
nodes. Solution is to enable computational nodes in the same sets, as they were
disabled, which will significantly reduce the number of possible combinations.

So, each Tperf time steps conditions for disabling and enabling computational
nodes should be checked.

2.2 2D and 3D cases

Same logic could be applied to higher dimensions in case only one axis is spread
between computational nodes, i.e. for 2D−X, 2D−Y , 3D−X, 3D−Y , 3D−Z
virtual topologies. All changes in formulas are related to the size of chunks
assigned to computational nodes, as they are two- or three-dimensional for 2D
and 3D modes correspondingly.

For 2D − XY , 3D − XY , 3D − Y Z, 3D − XZ and 3D − XY Z virtual
topologies similar algorithms with minor changes could be applied. The most
significant change is that nodes can’t be disabled or enabled separately from the
line or plane for 2D and 3D modes correspondingly.

Let’s consider 2D case with 2D−XY virtual topology. Let S = A∗B, where
A and B are the sizes by Ox and Oy axes correspondingly, N = n ∗m, where n
and m are the sizes of nodes’ grid by Ox and Oy axes correspondingly. Both A
and B are defined same to 1D mode.

S =

N−1∑
k=0

St
k =

n−1∑
i=0

m−1∑
j=0

St
(i,j) =

n−1∑
i=0

m−1∑
j=0

ati ∗ btj ,∀t ≥ 0 (20)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

417

Parallel FDTD Solver with Static and Dynamic Load Balancing 9

In the same way to 1D case U t
(i,j),(k,l) and performance parameters perf t(i,j),

latencyt(i,j),(k,l), bandwidth
t
(i,j),(k,l) are setup.

Computations could be spread for each axis independently by the same al-
gorithm as discussed in the previous sections, except that perf ti now is the
performance of the whole line, for example:

perf ti =

m−1∑
j=0

perf t(i,j) (21)

Another difference arises in the disabling and enabling conditions of compu-
tational nodes. Let the latencies for share operations between i and i+1 columns
be the next:

latencyt(i,all),(i+1,all) =

∑m−1
j=0 latency(i,j),(i+1,j)

m
(22)

latencyt(i,all),(i+1,all+1) =

∑m−2
j=0 latency(i,j),(i+1,j+1)

m− 1
(23)

latencyt(i,all),(i+1,all−1) =

∑m−1
j=1 latency(i,j),(i+1,j−1)

m− 1
(24)

In the same way bandwidth is setup. Share time between i and i+1 columns
could be estimated using Hockney model:

U t
(i,all),(i+1,all) =

m−1∑
j=0

U(i,j),(i+1,j) (25)

τ tshare(i,all),(i+1,all)
≈ latencyt(i,all),(i+1,all) +

U t
(i,all),(i+1,all)

bandwidtht(i,all),(i+1,all)

(26)

All connections across Ox and Oy axes are considered in sorted order, de-
scending by the values of share time across that axis and across diagonals. For
border between i and i+ 1 columns across Ox axis this value is next:

τ tshare(i,all),(i+1,all)
+ τ tshare(i,all),(i+1,all+1)

+ τ tshare(i,all),(i+1,all−1)
(27)

Disabling conditions are similar for the ones from 1D case, except that whole
lines are considered, and there are 8 possible directions for communications, and
same for enabling conditions.

2.3 Saving profiling data

Gathered dynamic data could be saved to disk for further re-usage. Specifically,
this includes performance values perfTi , latencyTi,j , bandwidth

T
i,j . In order to

maintain average values of these parameters, they should be saved in the special

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

418

10 Gleb Balykov

manner. At time step T all parameters could be described as: perfTi =
Qperfi

Pperfi
,

latencyTi,j =
Qlatencyi,j

Platencyi,j
, bandwidthTi,j =

Qbandwidthi,j

Pbandwidthi,j
. Qperfi is the total number

of grid points, on which computations were performed on i computational node,
Pperfi is the total time, which was spent on computations on i computational
node, similar for latency and bandwidth.

The values of Q and P are then saved to disk. When file with Q and P is
loaded, performance parameters right before time step t could be calculated in
the next manner:

perf ti =
Qperfi + Tperf ∗

∑l−1
v=0 S

v∗Tperf

i

Pperfi +
∑t−1

v=0 τ
v
calci

(28)

latencyti,j =
Qlatencyi,j

+
∑l

v=1 lat
v∗Tperf

i,j

Platencyi,j
+ l

(29)

where l = t/Tperf . Bandwidth is calculated similar to latency. Balancing
could now be performed before the start of computations, as perf0i , latency0i ,
bandwidth0i are now defined. If balancing is performed only before the start of
computations, balancing overhead is fully removed, and balancing is static. Also,
this approach allows to improve accuracy of performance parameters by storing
just 6 values on disk.

2.4 Further work

Performance parameters, measurements of which were discussed in previous sec-
tions, describe the performance of the computational node. However, this im-
plied that all computational nodes perform the same amount of measurements
for each grid point. This could be incorrect in case some electromagnetic sources
are setup, for example point source or plane wave source, or some additional
measurements have to be performed only for part of grid points, for example
near-to-far field computations. In such cases additional computations have to be
considered in load balancing algorithm, which will be discussed in further work.

3 Measurements

All measurements were performed on IBM Blue Gene/P supercomputer and
Tesla CMC server. IBM Blue Gene/P is a massively parallel computational sys-
tem. It contains 8192 calculation cores (2048 calculation nodes, 4 core each)
with peak performance at 27.9 tflops. Single calculation core is a PowerPC 450
with frequency at 850 MHz having 4GB of RAM. Communicational network is
a three-dimensional torus and unites all the nodes: single node has 6 bidirec-
tional connections with 6 neighbors. Tesla CMC [12] is a computational system
of Moscow State University with two Intel Xeon E5620 CPUs and set of Nvidia
GPUs, including Nvidia Tesla K20c with 5 Gb memory.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

419

Parallel FDTD Solver with Static and Dynamic Load Balancing 11

Basic FDTD computation was chosen as a benchmark (no PML, no TF/SF,
point wave source for each computational node). In each computation virtual
topology was mapped on computational nodes of Blue Gene/P in such a way
that virtual topology matches physical topology, so, computational nodes, which
are neighbors in virtual topology, will be neighbors in physical topology too, and
no additional share expenses arise.

In order to demonstrate dynamic balancing, computational nodes with dif-
ferent performances were emulated on IBM Blue Gene/P nodes for 3D Yee grid
of size S = 100∗100∗100. Computations were performed on 8 nodes, 4 of which
were emulated to be slower by specific delay at each time step. Delay varies from
large delay of 2 seconds, to small delay of 0.02 seconds, for which performance
of slower computational node was 80% of performance of normal computational
node for each time step.

The measurements in table 1 show, that load balancing could significantly
improve total execution time, especially for long running tasks, even when com-
putational nodes’ delay is fairly small (i.e. computational nodes have nearly
similar performances).

On Tesla CMC server computations were performed on both GPU and CPUs.
For cases, when computation data could be fully located in GPU memory, usu-
ally, it is more efficient to perform all computations just on GPU, because this
will remove overhead of data copying to/from GPU.

However, this is not the case for most FDTD modeling, especially for three-
dimensional cases, as large numerical grids are required for good accuracy. In
such cases there is no way to remove data copying to/from GPU at each time
step, as data can not be fully located in GPU memory. Additional share time
with GPU could be taken into account in dynamic load balancing algorithm
described in previous sections.

Measurements on Tesla CMC were performed on 2 computational nodes,
one with Tesla K20c, for grid of size 768*512*512, which can’t be fully located
in GPU memory. Balanced computation took on 15% less execution time than
computations on a single node with GPU, and on 50% less execution time than
on a equal spread between two computational nodes.

Table 1. Measurements for 3D mode for 8 computational nodes for Yee grid with size
S = 100 ∗ 100 ∗ 100.

Nodes delay, seconds Time steps Execution time decrease with rebalance

2 100 61.3%

2 1000 above 90%

0.2 1000 14.4%

0.2 10000 28.2%

0.02 10000 3.6%

0.02 20000 5.0%

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

420

12 Gleb Balykov

4 Conclusion

Developed FDTD solver provides features for dynamic load distribution between
computational nodes. Measurements prove that described dynamic load balanc-
ing algorithm could significantly improve overall computational time on hetero-
geneous computational systems. This approach could be useful for computational
systems with different CPUs on different computational nodes. Besides, this ap-
proach could also be used on computational systems with different GPUs on
some computational nodes, where performance of GPU and additional commu-
nication time with GPU are taken into account. In further work dynamic load
balancing would be improved for cases where different amount of computations
is performed for different Yee grid points.

References

1. Yee, K.S.: Numerical solution of initial boundary value problems involving maxwell’s
equations in isotropic media. IEEE Transactions on Antennas and Propagation, vol.
14, No.3, pp. 303–307 (1966)

2. Franek, O.: A simple method for static load balancing of parallel FDTD codes.
Proceedings of the International Conference on Electromagnetics in Advanced Ap-
plications (ICEAA 2016), pp. 587–590 (2016)

3. Shams, R., Sadeghi, P.: On optimization of finite-difference time-domain (FDTD)
computation on heterogeneous and GPU clusters. Journal of Parallel and Dis-
tributed Computing, vol. 71, no. 4, pp. 584–593 (2011)

4. Balykov, G.: Parallel FDTD Solver with Optimal Topology and Dynamic Balancing.
In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2017. Communica-
tions in Computer and Information Science, vol. 793, pp. 337–348. Springer, Cham
(2017)

5. Sharma, R., Priyesh, K.: Dynamic Load Balancing Algorithm for Heterogeneous
Multi-core Processors Cluster. In: Communication Systems and Network Technolo-
gies (CSNT), pp. 288–292. IEEE (2014)

6. De Grande, R., Azzedine, B.: Dynamic balancing of communication and computa-
tion load for HLA-based simulations on large-scale distributed systems. In: Journal
of Parallel and Distributed Computing, vol. 71, no. 1, pp. 40–52 (2011)

7. Ravichandran, K., Lee, S., Pande, S.: Work Stealing for Multi-core HPC Clusters.
In: Jeannot E., Namyst R., Roman J. (eds) Euro-Par 2011 Parallel Processing. Euro-
Par 2011. Lecture Notes in Computer Science, vol 6852. Springer, Berlin, Heidelberg
(2011)

8. Cederman, D., Tsigas, P.: Dynamic load balancing using work-stealing. In: GPU
Computing Gems, Elsevier (2012)

9. Parallel FDTD solver, https://github.com/zer011b/fdtd3d
10. Taflove, A., Hagness S. C.: Computational Electrodynamics: The Finite-difference

Timedomain Method. Artech House, 3rd ed. (2000)
11. Hockney, R.: The communication challenge for MPP: Intel Paragon and Meiko

CS-2. Parallel Computing, vol. 20, No.3, pp. 389–398 (1994)
12. Tesla CMC Server of Moscow State University, http://hpc.cmc.msu.ru/tesla

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

421

