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Abstract. Models of information spread in online social networks (OSNs)
are in high demand these days. Most of them consider peer-to-peer in-
teraction on a predefined topology of friend network. However, in partic-
ular types of OSNs the largest information cascades are observed during
the community-user interaction when communities play the role of su-
perspreaders for their audience. In the paper, we consider the problem
of the parallel simulation of community-wide information spreading in
large-scale (up to dozens of millions of nodes) networks. The efficiency
of parallel algorithm is studied for synthetic and real-world social net-
works from VK.com using the Lomonosov supercomputer (Moscow State
University, Russian Federation).

Keywords: Parallel simulation · Model of information spread · Online
social networks

1 Introduction

Wide spread of online social networks (OSNs) gave rise to a variety of models
aimed at simulating and forecasting processes of information assimilation and
transmission between users. While first models of this type were purely abstract
(e.g. linear threshold models of opinion dynamics operating on syntetic graphs
like Erdos-Renyi or Barabasi-Albert), current availability of large amounts of
OSN data allows to create more realistic, data-driven models of information cas-
cades. These models avoid the assumption of the homogeneity of nodes that was
intrinsic to earlier ones; instead, these models are aimed to reproduce aggregated
dynamics of information spread from reactions of diverse individuals acting in
frames of a given network topology. The main difference then is that friendship
graph and parameters of users’ behavior are extracted directly from the observed
data.

Data-driven approach not only refines the basic models but also states new
problems arising from the nature of data observed. In this paper, we consider the
example of such a problem related to the existence of ’super-hubs’ (communities)
in OSN which numbers of subscribers are orders of magnitude larger than for
individuals (ordinary users). For example, a median number of subscribers for
an individual in Russian OSN vk.com is equal to 180 while communities can
have size of several hunderds thousands and even millions subscribers. Thus,
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simulating community-wise information spread requires consideration of large-
scale networks. Together with the rapidity of informational processes in OSNs
this leads to the necessity of applying parallel algorithms to obtain results of a
forecast in time.

In this study, we present the parallel algorithm of the community-wise infor-
mation spread supporting the flow of heterogeneous news (with account of daily
rhythms) through the network of community subscribers, friends of subscribers
etc. Presented algorithm (Section 3), on the one hand, is general in a sense that
it supports embedding of arbitrary models of activities and reactions of OSN en-
tities, but, on the other hand, is tuned to the specific properties of OSN. Section
4 presents the results of experiments on scalability of the algorithm for single-
and multi-community cases, for real-world and synthetic test cases.

2 Related Work

The modeling of the process of information dissemination in social networks
has a wide range of applications: the study of factors that affect the process
of information dissemination, the prediction of reaction, the maximization of
influence, rumor controlling, the evaluation of public opinion, etc.

In the task of modeling processes on large networks, researchers and develop-
ers are faced with a large number of problems associated with the heterogeneity
of vertex types, the amount of data transferred, and the distribution of vertices
by processes. Load balancing algorithms on graphs can be divided into sev-
eral groups depending on the problem under consideration: (i) type of process
(spreading information, epidemiological processes), (ii) network topology (real
world network or artificial like small-world, scale-free), (iii) possibility of gen-
eralization (algorithms for specific tasks or multi-purpose systems for parallel
graph processing).

Systems of the first class take into account features of the simulated process.
The most common problem is the modeling of epidemiological processes. Exam-
ples of systems of this class are EpiFast [1], EpiSimdemics [2] and Indemics [3].
EpiFast has a master-slave computation model. Experiments show that it shows
scalability to 224 processes for approximately 16 million of entities. However, ma-
jor drawback which has an impact on scalability is the arbitrary assignment of
vertices to processes containing approximately the same number of edges. Next
example is EpiSimdemics, which uses semantics of disease evolution and dis-
ease propagation in large networks (up to 100 million) and considers geospatial
constraints. The above mentioned approaches use the MPI standard for paral-
lelisation. Another solution that takes into account features of the process under
consideration is Indemics. It has an interface for work and functionality for stop
the simulation at any point, find out the state of the simulated system and add
additional interventions.

Modeling and simulation of social networks focuses more on other processes
like reproducing complex social phenomena, such as spreading of information
and its impact on others, maximization influence, identification of opinion lead-
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ers and what-if tasks. Hou [4] proposed framework named SUPE-Net for parallel
discrete event simulation. It has utilities for social network generation, algorithms
(PageRank and the SIR model in study), which show the scalability and effective-
ness of this framework. To distribute the vertices of the network by processes, the
authors use the algorithm CommPar [5], which has a community-based multi-
level graph partition strategy. However, for this algorithm it is required to know
the number of available processes. Nevertheless, it efficiently reduces the over-
head of communications between processors. Another example is using parallel
algorithms for community detection for networks, for example, work [6] can
process billions of edges in short time (50M edges per second for the fastest
algorithm).

Thus, solutions of this class most often provide scalability of parallel algo-
rithms with additional constraints on the interaction of vertices, which signifi-
cantly reduces the communication complexity of modeling.

In the second approach, modeling techniques are considered on networks
with a special topology. For example, authors [7] consider a stochastic Kronecker
graph, which allows to reproduce real-world networks and keep their important
topological properties. Experiments were carried out for a sparse graph with a
size up to one billion nodes.

Last group of systems are general systems for parallel processing of graphs.
They use different computing models to implement parallelization. Pregel [8] sys-
tem uses Bulk Synchronous Parallel model. Apache Giraph [9] is based on previ-
ous mentioned system Pregel, however, it has several improvements like master
computation, sharded aggregators, edge-oriented input. Another approach is us-
ing asynchronous model in a shared-memory setting, for example, GraphLab
[10].

In work [11], Aydın Buluс reviewed various algorithms for partitioning graphs
into parts: global algorithms for small graphs or as local search in multilevel
algorithms, iterative improvement heuristics which consistently improve the so-
lution, multilevel graph partitioning and evolutionary methods. Besides this,
there is solution for streaming graph partitioning [12], which able to compute
an approximately balanced partitioning of graph’s vertex. This solution uses
degree-based criteria and reaches the results for single pass over the input data.

If there is an uneven distribution of vertices on different processes, there is
an uneven computing load between the nodes. However, if different processes
have a large number of common edges, then much time is required to transfer
data between them. Thus, in order to reduce the running time of the program,
it is necessary to distribute the vertices between processes in such a way that
the most related components are processed in one process.

The existing algorithms do not take into account the presence of superspread-
ers that arise during modeling processes on networks. So for the task of spreading
information from, superspreaders are communities, which have edges with a large
number of subscribers, and individual users with a large number of subscribers.
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3 Method

3.1 Model Description

In order to reproduce information spreading processes in cyberspace more nat-
urally it is necessary to consider a lot of details such as types of entities, their
possible actions and interactions between them. The model used for our exper-
iments is described in detail in our previous paper [13]. Below there is a brief
description of it.

The model consists of three main entities: informational messages (IMs),
communities and users. Networks for information spreading include communities
and users as vertices and relations between them ( subscriptions or friendship
relations) as edges. IM represents the post, which can be transferred between
vertices.

The behavior of presented entities is defined by three internal models: model
of IM’s generation, model of activity and model of reaction. First model deter-
mines the time for the creation of new messages. Each message has following
characteristics: topic, publication time, virality coefficient. Model of activity de-
fines the status of each agent: active or inactive. The last internal model is
responsible for the result of the user’s interaction with messages: inaction, ap-
proval (like), the generation of a text message (comment), participation in the
dissemination of information (share). Each message has counters that reflect the
number of users’ responses to the message at the current time.

The presented approach allows to use various independent internal models
to adjust the necessary process for modeling. In addition, each model can be
specified in the appropriate input file. For the generative model input can contain
the distribution of the probability for generating messages depending on the day
of the week and time of day. In the presented model, each user can have his
own parameters for responding to messages, thus providing the heterogeneity of
agents.

Thus, the presented model allows you to simulate various processes and con-
figure model parameters, for e.g. using processed data from social networks.

3.2 Parallelization

The efficiency of the parallel simulation of the information spreading on a social
network depends a lot on the uniformity of computational and communication
load for different workers. In our previous work, a similar problem was already
examined for the task of epidemiological process modeling (SIRS) on stochas-
tic Kronecker graphs [7]. That study has shown that Master-Slave parallelizing
approach shows the best parallel efficiency. A reincarnation of this approach is
used in the current study to handle parallelization challenges of a social network
graph.

Detailed algorithms for Slave and Master processes are presented in Algo-
rithm 1 and Algorithm 2 respectively. The simulation is discrete and operates
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according to 3 internal models that were mentioned in the previous section: gen-
erative model Gm, activity model Am and reaction model Rm. The algorithm is
implemented in C++ using MPI standard for message exchange.

Masters and Slaves are two types of computational nodes, differing by their
functionality. Slave nodes host subsets of a social graph and perform iterative
updates of the system state according to internal models. The Master node is
responsible for fast and non-redundant data forwarding between subnetworks.
The responsibility to generate news and store user reaction statistics for them
also rests with Master node. Primary reasons for choosing Master node instead
of Slave nodes here are to circumvent the need to develop the synchronous news
generating engine on each Slave node and to reduce synchronization time be-
tween Slave processes.

The goal of the simulation is to represent the process of the information
spread step-by-step, not omitting any of transition states. This implies the ne-
cessity to maintain the relationship between each user and each piece of news
for each moment of time. On the other side, memory usage in the process of
the simulation should be as small as possible. Having this limitation in mind,
we propose the news-oriented storing system. That is, for each piece of news on
each Slave node there are defined three boolean masks that describe the state
of publication regarding users on this node:

– potential viewers — stores 1 in positions corresponding to users who haven’t
yet seen this publication, but have it included in their news feed; for exam-
ple, for some post that is published a moment ago, all subscribers of the
community of this post are potential viewers of it (if they were not reading
their news feed at the very moment of publication);

– spreaders — users who decided to share this piece of news with all their
subscribers;

– viewers — users who have already seen this publication.

On each iteration, Slave process receives the list of generated news from the
Master node (line 2 in Algorithm 1). Then each publication is processed in the
chronological order, from newest to oldest posts (line 3).

In the first phase, the list of potential viewers of this publication is examined
(line 4): we attempt to show the publication to the user and gather his feedback
about it. If the user is not active according to the activity model Am, the algo-
rithm moves on to the next potential viewer, and this one stays in the list to be
checked on the next iteration (lines 6). If the user is active, the flow continues.
Algorithm checks according to reaction model Rm whether the user likes the
publication or wants to comment it (lines 8-10), and if he does, the algorithm
increases corresponding counters for the publication. The next check is whether
the user wants to share the publication (lines 12), and if he does, he is added
to the bit mask of spreaders of this publication. When the reaction is gathered,
the user is deleted from the bit mask of potential viewers (line 13) and is added
to the list of those who saw this publication (line 14).

The second phase of processing each publication is processing of the list
of spreaders (which was constructed while examining potential viewers). Each
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Input : Activity model Am, reaction model Rm, news feed in the chronological
order N , a number of iterations T , M — master node for worker w,
all_masters — the list of all Master processes

1 for t from 1 to T :
2 syncNews(M);
3 foreach n ∈ N :
4 foreach p ∈ potentialV iewers(n) :
5 if notAm.isActive(p, t) :
6 continue
7 if Rm.isLike(n, p, t) :
8 addLike(n, p, t)
9 if Rm.isComment(n, p, t) :

10 addComment(n, p, t)
11 if Rm.isRepost(n, p, t) :
12 addRepost(n, p, t)
13 deletePotentialV iewer(n, p);
14 addV iewer(n, p);

15 foreach s ∈ spreaders(n) :
16 for e ∈ s.edges :
17 if dest(e) 6= w :
18 send_pools[dest(e)] ← (n, e)
19 else:
20 if not isV iewed(n, e) :
21 addPotentialV iewer(n, e)

22 deleteAllSpreaders(n);
23 sendInfoMessageToMaster(M);
24 sendPoolsToMaster(M);
25 for each (n, e) in

recv_pools(all_masters) :
26 if not isV iewed(n, e) :
27 addPotentialV iewer(n, e)

Algorithm 1: Parallel simulation scheme for the information spreading pro-
cess(for a Slave worker w)

subscriber of each spreader from the list is offered this publication, i.e., is added
to the list of potential viewers of this publication (lines 15-21). If a particular
subscriber is not hosted on the current computational node, information about
him and this publication is added to the message that will be sent to the Master
node (lines 18). If a subscriber is on the current node, then, if he has not already
seen the publication, he is added to the list of potential viewers of this publication
(line 21). By this moment the publication is set to be offered to all subscribers,
and the list of spreaders can be deleted (line 22).

When the algorithm processed in the described way all publications, it is
time to share results with other parts of the simulation system. After processing
spreaders of each news we obtained a set of pairs (n, e) of a user e from some
other node who became a potential viewer of a post n (see line 21). First of all,
the Slave node sends an informational message to Master node (line 23). This
message shows how many changes ((n, e) pairs) should be sent to the each other
Slave node in the system. Then a message containing all pairs grouped by hosting
computational nodes is sent (line 24). When the Master node has processed this
message along with others (processing details are thoroughly described below),
it sends back a message with the list of changes for the current Slave node. This
message contains pairs (n, e) obtained in the process of information spreading
on other Slave nodes. Each pair is processed as usual: if e has not yet seen n,
then e is added to the list of potential viewers of n. Only after processing all
these messages a node can move on to the next iteration.
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Input : i∗ – an index of a master process, Gm – generative model, Am –
activity model, N – news feed in the chronological order, T – number
of iterations, all_leafs — the list of all Slave nodes, own_leafs — the
list of Slaves that obey directly to this Master node

1 for i from 1 to T :
2 if i∗ = 0 :
3 generteNews(t);
4 syncNewsWithLeafs(all_leafs);
5 foreach l ∈ own_leafs :
6 infos← recvInitInfo(l);
7 consolidatedPool← allocateMemory(infos);
8 foreach l ∈ own_leafs :
9 nonBlockingRecv(l, consolidatedPool, infos);

10 waitForAllRecvs();
11 types← createMpiDatatypes(infos);
12 dispatchPool(all_leafs, types, consolidatedPool);

Algorithm 2: Parallel simulation scheme for the information spreading pro-
cess(for a Master worker w)

The primary task of a Master process on each iteration is to synchronize
states of its Slaves. Generally speaking, there may be several Master processes,
and each Master node cares only for a subset of Slaves (which is called own_leafs
in the Algorithm 2). However, if there are several Master nodes, we still have
to choose the only one which will be responsible for news generation. For this
selected Master node each iteration starts with generating news according to
generative model Gm and syncing them with all Slave nodes (lines 2-4). The
next step is receiving informational messages from Slave nodes (line 5). Master
node allocates memory for the consolidated pool according to the received infor-
mational message (line 7). When the memory is allocated, Master node receives
detailed information from its Slaves to this memory (lines 8-9).

The only thing left is to send to each Slave node all changes that are related
to this node. For each message that will be sent to the Slave node, we are
creating an MPI datatype according to informational messages received before
(line 11). This approach allows avoiding additional memory allocation. Then
these messages are sent to Slave nodes and are processed by them (line 12).

4 Experiments

4.1 VK Dataset Description

The first dataset is the example crawled from the popular Russian social network
VK.com (hereafter it will be called VK dataset). The crawled graph consists of
one big charity community (294,345 members), all its members and all their
subscribers. The graph contains 33,768,036 vertices (i.e. accounts in social net-
work), and only 227,473 of them have at least one outgoing edge (i.e. at least
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Fig. 1. Artificial dataset scheme

one friend). Note that this is not because other 33 millions accounts do not have
friends, but because the fact of having friends other than community members is
not recorded. That means there are at least 66,872 community members that do
not have subscribers at all and that there are 5,262,115 nodes who are friends to
two or more community members at the same time. A more thorough description
is given in our recent work [13].

4.2 Artificial Dataset Description

Characteristics of the VK dataset allow to conclude that an n-ary tree might be
a good rough approximation of VK graph. Let us think about the community
as a tree root which has a big pre-specified number of child nodes: these will be
community members. Each of these community member nodes has a fixed pre-
specified number of child nodes, which will represent their friends. These friend
sets are not intersected (i.e. there are no nodes that are subscribed to more than
one community member). A forest of such trees was used as an artificial dataset
to test some hypotheses about algorithm efficiency with respect to the number
of communities. The graph scheme is presented in Figure 1.

4.3 Results on the Natural Data

All experiments were performed using Lomonosov supercomputer (Moscow State
University, Russian Federation) which has 4,096 cluster nodes with Intel Xeon
X5570 2.93 GHz processor and 12 GB of RAM per node. Each cluster node can
hold up to 8 processes.

The algorithm from the previous section was applied at first to the VK
dataset and run for 3,000 iterations (500 hours of model time) in several paral-
lelization settings: a sequential version and parallel version on 3, 8, 16, 32 or 64
processes.

Simulation dynamics are presented in Fig. 2. Computational load does not
significantly increase in time despite the growing number of publications in the
system, even though publication processing is the main source of computational
load in the system.
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Fig. 2. Simulation dynamics

Parallelization allows us to significantly reduce simulation time (which is
shown in the Fig. 3, exact timing is shown in Table 1). More specifically, modeling
of 500 hours of the network evolution can be done in several minutes. This
means the algorithm may be used in the day-to-day operative forecasting of the
information flow.

However, even with sufficient computation-to-communication ratio (around
2/3 of iteration time is spent on computations, mostly processing potential view-
ers, and 1/3 on communication, see Fig. 4) the parallel efficiency of the algorithm
is low. This is because the computational load is not increasing during simula-
tion.

Table 1. Simulation time by the number of processes on VK dataset

Number of processes Simulation time, seconds
1 19820.20
3 13187.40
8 10180.00

16 6959.38
32 3513.66
64 1793.57
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Fig. 3. Speedup ratio on the VK dataset for the different number of processes

Computational load increases when information cascades become deeper and
more intensive. Intensity could be increased either by increasing probabilities
of the news generating model or by increasing the number of communities in
the dataset. Increasing probabilities, however, makes the model less plausible.
Therefore for deeper understanding of the algorithm properties, it was run on
an artificial network with several communities. This network was described in
details in the section 4.2.

4.4 Results on Artificial Data

Table 2. Simulation time by the number of processes on artificial dataset, seconds

Processes: 1 3 8 16 32 64 128
Communities

5 28420.10 16017.30 8001.07 5391.60 2893.30 1570.42 978.86
4 20393.20 11523.10 7263.05 4387.40 2246.57 1212.05 759.22
3 14509.60 8239.09 5966.98 3485.21 1683.66 896.08 634.81

The goal of the experiment with artificial data was to understand the relation
between parallel efficiency and the number of communities in the network.

Parallel efficiency for different numbers of processes for 3,000 iterations is
presented in the Figure 5. Exact timings are available in the Table 2. It is clearly
seen there that the parallel efficiency of the algorithm increases with the number
of communities in the graph. Almost exponentially decreasing simulation time
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Fig. 4. Time spent on different stages of simulation (8 processes)

when the number of processes increases from 16 to 32, 64 and 128 for any number
of communities can mark the insufficient computational load in the simulation.

That is why future research directions are towards modeling a multi-community
landscape with mixing audience, creating specialized load balancing algorithms
for such communities and involving Master processes in the active computations.

5 Conclusion

We presented an algorithm for parallel simulation of community-oriented infor-
mation spread which allows easy modification of behavioral patterns of users and
communities via probabilistic models. The algorithm was applied to the subset
of the VK.com, the largest Russian social network. The subset contained all
members of a big charity community and all their friends. Experimental results
show the applicability of this algorithm for day-to-day modeling of planned infor-
mation cascades. However, experiments also revealed insufficient computational
load provided by this dataset. For the detailed study of algorithm properties it
was applied to the artificial dataset of similar structure that included several
communities. The increasing number of communities increases the number of
news and therefore rises up computational load, allowing the proposed method
to finally prove its applicability.
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Fig. 5. Parallel efficiency on artificial data
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