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Abstract. In the framework of frequency-domain full waveform inver-
sion (FWI), we compare the performance of two MPI-based acoustic
solvers. One of the solvers is the time-domain solver developed by the
SEISCOPE consortium. The other solver is a frequency-domain multi-
frontal direct solver developed by us. For the high-contrast 3D velocity
model, we perform the series of experiments for varying numbers of clus-
ter nodes and shots, and conclude that in FWI applications the solvers
complement each other in terms of performance. Theoretically, the con-
clusion follows from considerations of structures of the solvers and their
scalabilities. Relations between the number of cluster nodes, the size of
the geophysical model and the number of shots define which solver would
be preferable in terms of performance.
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1 Introduction

Numerical simulation of acoustic wavefields is an important part of many algo-
rithms developed to solve problems arising in exploration geophysics. In partic-
ular, it serves as an engine for full-waveform inversion (FWI) that is typically
done in the frequency domain using a hierarchical multiscale strategy (e.g., [8],
[10], [12] and references cited therein). For macro velocity reconstruction, re-
peated simulations are performed for a number of (usually) low frequencies (up
to 10 Hz) at each iteration of the process. In simulations, the pressure wavefield
is excited by a point source working as a harmonic oscillator at a particular fre-
quency. In industrial applications, the number of shots can be tens of thousands
or more, whereas receivers are even larger in quantity.

Any approach for frequency-domain acoustic wavefield simulation has both
advantages and drawbacks that may be crucial in a particular situation. Here, we
consider two representative solvers and compare their accuracy and performance.
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One conventional solver is based on time-domain simulation followed by
Fourier transform. Alternative approaches directly tackle the Helmholtz equa-
tion. In 3D, it requires solving a system of linear equations with a huge sparse
coefficient matrix. Iterative solvers are one notable member of this family [9],
[2]. Comparatively new ideas of intermediate data compression [5],[13],[14] ap-
plied to solution algorithms for linear equation systems with sparse coefficient
matrices make using direct solvers possible. Our second solver for comparison
utilizes these ideas.

2 Method

The wave equation

∂2p

∂t2
− c2(x, y, z)∆p = f(t)δ(x− xs, y − ys, z − zs), (1)

can be solved in the time-domain for a particular point source position
(xs, ys, zs) and we can then apply the Fourier transform

p̂(ω, x, y, z) =

∫
e−iωtp(t, x, y, z)dt (2)

to obtain the frequency-domain solution. Here c(x, y, z) denotes velocity at
point (x, y, z), f(t) is the source function, δ denotes the Dirac delta function and
p(t, x, y, z) is the pressure at point (x, y, z) and time t. Here we use a time domain
solver developed by the SEISCOPE consortium (https://seiscope2.osug.fr). We
refer to it as the time-domain finite-difference (TD) solver. Perfectly matched
layers (PML) [3] are used to decrease the influence of the boundaries on the
computational domain.

Provided the Fourier transform f̂(ω) of the source function is not zero at
the frequencies of interest, the solutions for all frequencies become available
at the same time. For different source point positions, computations are done
independently of each other. This explains the ideal MPI scalability of the TD
solution with respect to the number of shots when one shot is assigned per one
cluster node.

In the frequency-domain approach, the Helmholtz equation

∆u+
ω2

c2(x, y, z)
u = δ(x− xs, y − ys, z − zs) (3)

is solved in the domain of interest. Supplying the equation with PMLs and
zero boundary conditions one comes to a boundary value problem. The finite-
difference approximation of the boundary value problem for equation (3) trans-
forms this to a system of linear equations

Au = f. (4)

Coefficient matrix A of this system is sparse, complex-valued (due to use of
PMLs) and symmetric. Its non-zero elements depend on the values of velocity
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c(x, y, z) in the computational domain and on frequency ω. The right-hand side
vector f is defined by the source point position.

The multifrontal [4] direct approach to solve the system (4) consists of fac-
torization of a permuted (P stands for some permutation) matrix

Â = PAP t = LDLt. (5)

into a product of triangular matrices L,Lt and a diagonal matrix D, followed
by solving a system with triangular coefficient matrices

y = L−1P tf ;

z = D−1y;

u = PL−tz.

(6)

Factorization (5) is done once and can be used for all right-hand sides. This
is the main advantage of the direct solution of boundary value problems for the
Helmholtz equation with many source points. We refer to this approach as the
frequency-domain finite-difference (FD) direct solver.

The direct approach under consideration faces a challenge called a fill-in
phenomenon – the triangular factor L has many more non-zero elements than
matrix A that prevents an unlimited increase of the number of grid points. To
overcome this difficulty, we introduce intermediate data compression [11], [6] in
the solver. In this way, non-zero (mij × nij) blocks Lij of triangular matrix L
are approximated by products

Lij
∼= UijV

t
ij (7)

where Uij is a mij×r matrix, Vij is a nij×r matrix with small value of rank
r. Instead of storing block Lij factors, Uij and Vij are stored. This trick helps to
reduce memory requirements by 5-6 times and also reduces the computational
effort. To find matrices Uij and Vij approach based on randomized sampling [7] is
used. This data compressed technique is similar to hierarchically semi separable
(HSS) methods [5],[13],[14] and the respective solver is referred to below as the
HSS solver.

The HSS technique is not sufficient by itself to solve huge problems. To
scale this for larger systems, the factorization in the solver is implemented on
distributed memory systems with data distributed among multiple cluster nodes.

3 Algorithms of MPI-Parallelization

The time-domain (TD) solver is easily parallelized and scales ideally with respect
to number of right hand sides (Nshots). If the number of cluster nodes Nnodes >
Nshots one shot can be solved on each node without any data communications
between nodes. Therefore, the computational time of the TD solver is

TTD(Nproc, Nshots) = TTD(1, 1)max

(
Nshots

Nproc
, 1

)
(8)
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and can be estimated by solution time of 1 shot on 1 node.

The frequency-domain (FD) solver uses another type of parallelization be-
cause of the large memory and computation requirements of LDLt factorization.
This factorization requires much more memory than the TD solver, so for each
problem there is a minimum number of cluster nodes required to solve it.

Another obstacle of FD parallelization is the large number of sequential op-
erations in the factorization process that prevents achieving ideal parallelization.

The idea of parallelizing the factorization step is based on the special struc-
ture of the A- and L-factors which results from the permutation process in equa-
tion (5) [4]. This structure can be associated with the elimination tree [6]. The
details of such parallelization, including the scaling measurements are shown in
paper [6]. The scalability of this approach is good for a small number of cluster
nodes and becomes worse for many cluster nodes.

Performance can be improved in the case of many shots (i.e., when the
solver time is more than the factorization time) by using a modification of MPI-
parallelization for the solver. The details of this improvement are below.

HSS computational time is the sum of TFCT (reordering+factorization) and
TSLV (solve time, i.e. inversion LDLt factors) :

THSS(Nproc, Nshots) = TFCT (Nproc) + TSLV (Nproc, 1)Nshots (9)

Starting from some number of nodes, THSS doesn’t deacrese with increasing
Nproc. The reason is the poor scalability both of factorization and solve steps for

many cluster nodes. Tests show TFCT (Nproc) ≈ TFCT (N̂) and TSLV (Nproc, 1) ≈
TSLV (N̂ , 1) for a constant N̂ .

One idea for improving scalability is separating all shots into groups and solve
these groups in parallel on different sets of cluster nodes. The M = Nproc/N̂
groups (sets) have been proposed:

set #1: Shots [1 . . . Nshots

M ] are solved on the [1 . . . N̂ ] nodes;

set #2: Shots [Nshots

M + 1 . . . 2 ∗ Nshots

M ] are solved on the [N̂ + 1 . . . 2 ∗ N̂ ] nodes;

. . .

set #M: Shots [(M − 1) ∗ Nshots

M + 1 . . .M ∗ Nshots

M ] are solved on the [(M − 1)N̂ +
1 . . . Nproc] nodes.

The computational time can be written as:

THSS(Nproc, Nshots) =

{
TFCT (Nproc) + TSLV (Nproc, 1)Nshots, if Nproc <= N̂

TFCT (N̂) + TSLV (N̂ , 1)N̂max
(

Nshots

Nproc

)
, if Nproc > N̂.

(10)

Selecting N̂ can be done through trial and error. The final scalability and
computation time both for time-domain and frequency domain solvers are pre-
sented below
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4 Numerical Experiments

Performance and accuracy tests were run on the Shaheen II supercomputer
(https://www.hpc.kaust.edu.sa/content/shaheen-ii ) with the following hard-
ware characteristics: 2×Intel R©Xeon R©CPU E5-2698 v3 @2.3 GHz per cluster
node, 128 GB RAM/per node. Theoretical Peak (Rpeak) performance of one
node is 1,2TFlop/s. The main data storage solution is a Lustre Parallel file sys-
tem based on Cray Sonexion 2000 with a usable storage capacity of 17.2 PB
delivering around 500 GB/s of I/O throughput.

For the purpose of numerical comparison, we use a Overthrust (referred below
as OT) model (see [1]) with dimensions of 9× 9× 4.5km. In this model, velocity
varies between 2 300 m/s and 6 000 m/s. Example model cross-sections are
shown in Figure 1.

Fig. 1. The OT velocity model showing cross-sections in the X-Z plane (left), and the
Y-Z (right).

Table 1 lists the parameters of the numerical experiments used to evaluate
the solvers in the OT model. To provide approximately the same number of

Table 1. Parameters of numerical experiments.

ν(Hz) h(m) ppw Nx Ny Nz N dt(s)

5 90 5.1 110 110 52 0.6 · 106 0.00742

7 60 5.4 165 165 78 2.1 · 106 0.00495

15 30 5.1 330 330 155 17 · 106 0.00247

points per wavelength (ppw) for frequencies 5, 7 and 15, we computed solutions
using different grid steps, h, in meters. The corresponding numbers of cells along
each axis are shown in columns Nx, Ny and Nz along with the total numbers
of grid points (N). The time discretization step used for TD is shown in the
last column. The TD solver computations were performed using a time interval
[0, 10s].

The sources were placed at a depth of one grid point at the center of the
domain. Receivers were placed throughout the X-Y plane at the same depth. To
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demonstrate that the HSS solver is working correctly, we provide 2D snapshots
of the real part of the computed wavefield taken at the depths of the receiver
plane (Figure 2). Figures 3 and 4 show TD and HSS solutions along selected
profiles from Figure 2, as well as the magnified difference between two solutions.

Fig. 2. Snapshots of the solutions (real part) computed at the plane of surface receivers
using a HSS solver. The left picture is for 5 Hz, and the right is for 15 Hz.

Good agreement can be observed between curves in Figure 3 for the 5 Hz
and in Figure 4 for the 15 Hz solutions.

Fig. 3. Real part of the frequency-domain solution at 5 Hz shown along the red profile
from Figure 2. Red and blue lines correspond to TDFD and HSS solutions, respectively;
black line represents the magnified (x5) difference between them.

Four metrics were computed to quantify the difference between solutions.
Three of them are simple relative differences of two grid functions u and v
computed using classical functional norms:
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Fig. 4. Real part of the frequency-domain solution at 15 Hz shown along the red profile
from Figure 2. Red and blue lines correspond to TDFD and HSS solutions, respectively;
black line represents the magnified (x5) difference between them.

βk(u, v) =
||u− v||k
||u||k

, k = 1, 2,∞ (11)

If computations of the norms in formula (11) are done for spheres of radius
r and centered at the source point, one gets function βk(r). The wavefields u,v
in formula (11) have singularities at the source locations. Therefore, we exclude
a sphere of small radius r0 around the source from the volume of interest. The
last (fourth) metric is computed in a similar way using:

γ(u, v) =

∣∣∣∣1− ∣∣∣∣ (u, v)

||u||||v||

∣∣∣∣∣∣∣∣ . (12)

The function γ(r) is getting by the similar way as βk(r). Graphs of functions
βk(r) and γ(r) are shown in Figure 5. The radius r0 of a small excluded sphere
was taken to be equal to 10h/3. We clearly observe that the discrepancy between
the two solvers generally increases with the volume radius and frequency, as is
generally expected. A somewhat larger jump between 5 and 15 Hz may suggest
insufficient grid size for the complex OT model with high acoustic contrasts.

Fig. 5. Difference between solutions obtained with Seiscope and HSS solvers measured
as a function of the domain size.
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5 Comparison of Numerical Performance

The relative performance of the TD and HSS solvers is measured on various
number of cluster nodes (Nnodes) and number of shots (Nshots).

To get a TD solution for specific frequencies for FWI such as 5Hz, 7Hz and
15Hz the forward problem is solved in the time domain (1) on a 30m mesh and
the result forward Fourier transformed to extract the frequency information. The
total computational time for the TD solver is used for comparison with the FD
solver.

To get a solution using the FD solver for these frequencies, the Helmholtz
problem (3) is solved for each frequency 5Hz, 7Hz and 15Hz using parameters
from Table 1. The sum of these three FD times are presented below. The com-
putational times for coarse (90m) and medium (60m) meshes are significantly
less than times for a fine mesh (30m). Table 2 shows the ratio of the TD and
FD solver computation times. The sum of times for three meshes is used for the
THSS values.

The scaling is shown in the Figure 6.

Fig. 6. Scalability of FD solver (HSS) for 12 800 sources (measured up to 128 cluster
nodes and estimated up to 2048 ones).

For particular pairs of values (Nnodes,Nshots), the solvers run times (in sec-
onds) are provided in Table 2 in the form of fractions, where run time TTD is
put as the numerator and THSS as the denominator.
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Fig. 7. Timing of TD and FD solvers (measured up to 128 cluster nodes and estimated
up to 2048 ones).

Table 2. Timing results for two solvers represented as ratios with TTD/THSS . Note
that for ratios > 1.0 the HSS solver becomes relatively more efficient.

N shots 1 128 1280 12800

N nodes

32 161/2945 644/2978 6440/3275 64400/6245

64 161/2625 322/2648 3220/2857 32200/4945

128 161/2555 161/2575 1610/2757 16100/4570
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The TD solver scales ideally with respect to Nshots. Measured run time for
one shot on one node is 161 sec. 128 shots can be computed on 32 nodes for 644
sec, on 128 nodes for 161 sec, but further increases in Nnodes do not lead to run
time reduction. Scalability of the HSS solver for one shot is determined by the
scalability of factorization and decays with increasing Nnodes. Increasing Nshots

gives additional opportunity to improve scalability.

Figure 8 illustrates how the FD and TD solvers complement each other when
comparing Nshots and Nnodes.

Fig. 8. Relative performance of the TD and FD solvers shown with number of shots
(vertical axis) versus number of nodes (horizontal axis). The blue line defines the line
of equal performance.

The blue line in Figure 8 defines the line of equal performance of the two
solvers. For a given number of nodes (Nnodes), this line defines the number of
shots that is ”big enough” to fully reap the benefits of the HSS solver and reach
the numerical performance of the TD solver. For example, for a problem with
a comparatively small number of shots which has to be solved on a particular
cluster (a point close to point C of line segment CD), the fastest way would
be using the TD solver. If the number of shots increases (the point moves to
D along CD) then a FDFD direct solver becomes faster. Another way to look
at it is to fix the number of shots, such as defined by horizontal line AB. Then
moving from point A towards B along horizontal segment AB means solving the
same problem on clusters with increasing number of nodes. For a fixed number
of shots, a FDFD direct solver would usually be faster for comparatively small
clusters, but on larger clusters TD is more efficient.
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6 Conclusions

We compare two solvers for the acoustic wave equation for different cluster sizes
and variable numbers of shots. The time-domain finite-difference (TD) solver
scales perfectly, with effort linearly increasing with number of shots. In contrast,
a direct frequency-domain HSS solver obtains the global solution for the entire
domain and all the shots. HSS computational effort is non-linearly dependent on
available resources, and the benefit/cost ratio increases sharply with increasing
number of shots. We have performed a series of numerical experiments with
real-world scenarios using the Overthrust velocity model and the Shaheen II
supercomputer. These experiments demonstrate the existence of the line of equal
performance, comparing number of shots versus number of available nodes. The
TD solver usually wins in the segment of comparatively large values of the ratio
Nnodes/Nshots and the HSS solver wins where the ratio is lower.

While generally larger numbers of nodes become available with time (as com-
puting power becomes cheaper), this is offset by the rapidly increasing trace
density of seismic acquisition systems that are constantly growing in number
of shots and receivers per square kilometer. These two concurrent trends would
likely maintain a need for both types of solvers depending on exact survey ge-
ometry, available computing power and number of shots for a particular FWI
problem. Therefore, an optimal FWI toolbox should contain both solvers so that
the most efficient one can be used for a specific scenario based on the line of equal
performance revealed in this study

Acknowledgments. We also appreciate KAUST for providing access to Sha-
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