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Abstract. This paper is dedicated to developing effective methods of
3D acoustic tomography. The inverse problem of acoustic tomography
is formulated as a coefficient inverse problem for a hyperbolic equation
where the speed of sound and the absorption factor in three-dimensional
space are unknown. Substantial difficulties in solving this inverse prob-
lem are due to its nonlinear nature. A method which uses short sounding
pulses of two different central frequencies is proposed. The method em-
ploys an iterative parallel gradient-based minimization algorithm at the
higher frequency with the initial approximation of unknown coefficients
obtained by solving the inverse problem at the lower frequency. The ef-
ficiency of the proposed method is illustrated via a model problem. In
the model problem an easy to implement 3D tomographic scheme is used
with the data specified at a cylindrical surface. The developed algorithms
can be efficiently parallelized using GPU clusters. Computer simulations
show that a GPU cluster capable of performing 3D image reconstruction
within reasonable time.

Keywords: Ultrasound tomography · Medical imaging · Inverse prob-
lem · Gradient method.

1 Introduction

This paper is dedicated to methods of acoustic tomography, or, to be more spe-
cific, to ultrasound tomography used for imaging of soft tissues in medicine [22,
12, 23]. Differential diagnosis of breast cancer is one of the most important prob-
lems in modern medicine. Ultrasonic tomography could be the most promising
method for regular mammographic screening.

However, currently existing ultrasonic devices are not tomographic. The re-
flectivity images obtained by these devices reveal only the contours of tissue
irregularities and do not make it possible to characterize the tissues with suf-
ficient resolution. Hence developing high-resolution ultrasound tomographs for
imaging of soft tissues is very important task.

The most interesting results in ultrasound tomography are associated with
the development of methods for solving problems of 3D wave tomography in
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terms of mathematical models incorporating both diffraction and absorption
effects. Breakthrough results in mathematical methods for solving inverse prob-
lems are due to the possibility of directly computing the gradient of the residual
functional between the computed and experimental data at the detectors [2, 16,
17, 13, 11, 8]. Detectors are placed at a cylindrical surface surrounding the object
studied. This is the underlying approach of the methods used in this paper.

One approach to ultrasound tomography involves using simplified linearized
models [22, 20, 24]. However, a linearized model can provide only a rough char-
acterization of tissues [21].

The development of numerical methods for solving direct and inverse prob-
lems of wave tomography is a challenging computational task [3]. We solve the
direct problem using finite difference approximation of hyperbolic-type differ-
ential equations. To solve inverse problems, we use iterative parallel algorithms
based on direct computation of the gradient of the residual functional. To com-
pute the gradient, we solve the conjugate problem in reverse time. The amount of
input data and the number of unknowns in the inverse 3D problem exceed 1 Gb
and 100Mb, respectively. The algorithms are implemented on a supercomputer.

Because of the nonlinearity of the inverse problems of wave tomography the
residual functional is not convex, and this presents one of the main mathematical
challenges. As a consequence, gradient-based methods that minimize the residual
functional converge to some local minimum rather than the global minimum of
the functional. There are various approaches to find the global minimum of a
non-convex functional. Attempts were made to construct ”global” methods [13,
2, 14] to solve inverse problems.

In this paper, the dual-frequency method is proposed for finding approxi-
mate solutions of 3D coefficient inverse problems in acoustic tomography. The
dual-frequency method extends the domain of convergence of gradient-based al-
gorithms. This method can be applied primarily to ultrasound tomography. The
efficiency of the proposed method is illustrated via model problems. The devel-
oped algorithms are easily parallelized using supercomputers and GPU-clusters
[7, 18]. Computer simulations show that a GPU cluster capable of performing
3D image reconstruction within reasonable time.

2 Formulation and Solution Methods of the Inverse
Problem of 3D Acoustic Tomography

The aim of acoustic tomography is to reconstruct the internal structure of the
object using measurements of the acoustic pressure u(r, t) obtained on some
surface surrounding the object. Fig. 1 shows the scheme of a 3D acoustic tomo-
graphic examination where the measurements are taken on a cylindrical surface.
The emitters of sounding pulses are located on the same cylindrical surface. This
tomographic scheme can be used for ultrasonic mammography.

The formulation of the inverse problem of ultrasound tomography with the
data specified at a cylindrical surface is a novel approach. The peculiarity of the
algorithms developed for solving the inverse problem considered is that numerical
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methods use Cartesian coordinate system, making it necessary to minimize errors
of the interpolation of the computed wave field onto the cylindrical surface. The
tomographic scheme with the data specified at a cylindrical surface is easy to
implement in physical experiments.

Sources

Detectors

Fig. 1. The scheme of a tomographic exami-
nation.
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Fig. 2. Sounding pulse for different
wavelengths: waveform (a,c) ; fre-
quency spectrum (b,d).

The scalar wave model is used to describe the wave propagation process. This
model also takes into account such important factor as ultrasound absorption
in the medium. The initial pulse emitted by a point source was calculated using
the formula u(x) = sin(2πx/(3λ)) · sin(6πx/(3λ)), x ≤ 1.5λ. Fig. 2a,b shows the
waveform and the frequency spectrum of a pulse with a wavelength of 5 mm,
Fig. 2c,d shows the waveform and the frequency spectrum of a pulse with a
wavelength of 12 mm. The bandwidth of these pulses at -3dB level (indicated
by a dotted line) is approximately 65% of the central frequency.

The simplest absorption model is used in this paper [9]. The inverse problem
of ultrasound tomography can then be formulated as a coefficient inverse problem
of reconstructing the unknown coefficients c(r) and a(r) in the wave equation,
given the measurements of the acoustic pressure on the surface S made with
different positions q of the sources:

c(r)utt(r, t) + a(r)ut(r, t)−∆u(r, t) = δ(r − q) · f(t); (1)

u(r, t)|t=0 = 0, ut(r, t)|t=0 = 0, ∂nu(r, t)|ST = p(r, t). (2)

Here c(r) = 1/v2(r), where v(r) is the speed of sound in the medium; r ∈
RN (N = 3), the position of the point in space; u, the acoustic pressure; ∆, the
Laplace operator with respect to the variable r. The function f(t) describes the
sounding pulse generated by a point source at q; ∂nu(r, t)|ST is the derivative
along the normal to the surface S in the range (r, t) ∈ S × (0, T ), where T is
the duration of the measurement. The function p(r, t) is known, and a(r) is the
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absorption factor. Formulas (2) represent the initial conditions and the Neumann
conditions at the boundary of the computational domain.

It is assumed that inhomogeneity of the medium is caused by variations of the
sound speed and absorption factor. Outside of the region studied the absorption
factor is equal to zero, a(r) = 0, and the speed of sound is known and equal to
v0 = const. This simple model of wave propagation with absorption (1) can be
used to describe ultrasound waves in soft tissues.

The inverse problem is formulated as the problem of minimizing the residual
functional Φ(c(r), a(r)) with respect to its argument (c, a):

Φ(u(c, a)) =
1

2

T∫
0

∫
S

(u(s, t)− U(s, t))2 dsdt. (3)

Here U(s, t) is the acoustic pressure measured at the boundary S for the duration
(0, T ), and u(s, t) is the solution of the direct problem (1)–(2) for the given
c(r) = 1/v2(r) and a(r). For multiple ultrasound sources the total value of the
residual functional is the sum of the residuals (3) for each source.

Formulas for the gradient Φ′(c, a) of the residual functional for two- and
three-dimensional inverse problems in various formulations were derived in the
works [17, 16, 2]. A strict mathematical derivation of the gradient for the inverse
problem (1)–(2) using a model that accounts for the diffraction and absorption
effects was presented in the papers [8, 6, 10].

The gradient Φ′(u(c, a)) = {Φ′c(u), Φ′a(u)} of the functional (3) with respect
to the variation {dc, da} of the sound speed and absorption factor has the fol-
lowing form:

Φ′c(u(c)) =

T∫
0

wt(r, t)ut(r, t) dt, Φ′a(u(a)) =

T∫
0

wt(r, t)u(r, t) dt. (4)

Here u(r, t) is the solution of the main problem (1)–(2), and w(r, t) is the solution
of the “conjugate” problem for the given c(r), a(r), and u(r, t):

wtt(r, t)− a(r)wt(r, t)−∆w(r, t) = 0; (5)

w(r, t = T ) = 0, wt(r, t = T ) = 0, ∂nw|ST = u|ST − U. (6)

The boundary condition ∂nw|ST = 0 is applied at the part of the boundary
S where there are no detectors. To compute the gradient (4), the direct problem
(1)–(2) and the “conjugate” problem (5)–(6) must be solved.

Given the representation of the gradient (4), various iterative algorithms can
be used to minimize the residual functional. One of the simplest algorithms is
the steepest descent method.

The finite difference time-domain (FDTD) method on a uniform grid is used
to solve the three-dimensional equations (1)–(2) and (5)–(6). The grid step h and
time step τ are related by the Courant stability condition

√
3 ·c−0.5τ < h, where
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c−0.5 = v is the speed of sound. The following second-order finite difference
scheme is used to approximate equation (1):

cijl
uk+1
ijl − 2ukijl + uk−1ijl

τ2
+ aijl

uk+1
ijl − u

k−1
ijl

τ
−
∆ukijl
h2

= 0 (7)

Here ukijl = u(xi, yj , zl, tk) is the value of u(r, t) at the point (i, j, l) at the time
step k; cijl and aijl are the values of c(r) and a(r) at (i, j, l). ∆ is the discrete
Laplacian, which is computed using the formula:

∆uki0,j0,l0 =
i0+1∑
i=i0−1

j0+1∑
j=j0−1

k0+1∑
k=k0−1

bijlu
k
ijl. The coefficients bijl are provided,

for example, in the paper [15]. A similar finite difference scheme is used to solve
equations (5)–(6) in reverse time. The iterative process for solving the inverse
problem numerically is described in [4].

3 GPU-Implementation of the Explicit Finite-Difference
Algorithm for 3D Ultrasound Tomography

The algorithm for solving the inverse problem of ultrasound tomography is highly
data parallelizable [1, 5]. The values at all the grid points are computed at all
time steps by the same formula both in the “direct” (1)–(2) and “conjugate”
(5)–(6) problem and are independent of each other. Such algorithms can be
efficiently parallelized on SIMD/SPMD-architectures.

A typical size of the 3D problem is ≈ 4003, while the number of parallel
threads supported by a GPU device is on the order of 10000. Therefore, the
algorithm processes the 3D data array sequentially along the Z-axis (z-marching
method), as shown in Fig. 3. Sequential memory accesses are efficiently and
automatically cached by modern GPUs and can be rapidly loaded into GPU
registers.

Fig. 3. GPU-implementation of the explicit 3D algorithm.

In the Z-marching FDTD implementation, at each step along the Z-axis the
next layer (z = z0 +1) is loaded into the registers, and the results for the current
computed layer (z = z0) are saved to the global memory. The process is then
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repeated for the next value of z = z+1. The data for the current horizontal layer
reside in the cache and can be read by all threads with no performance penalty.
Each thread computes the results for points (x, y, z), where x and y are fixed,
and the Z range includes several dozen points. The highest performance on the
devices tested is achieved if each 32×4-thread block processes a 32×4×32-point
volume of data.

Nearly constant speed of sound, which differs from the speed of sound in
water by no more than 10%, is a specific feature of soft tissue tomography. Taking
into account this feature, the algorithm dynamically adjusts the computational
domain and processes only the volume where the waves emitted by the source
can be present. This volume is designated as V in Fig. 3 and is the intersection
of the cubic computational domain Ω and the sphere of radius V max · t centered
at the source. Here V max is the maximum sound speed in soft tissues, and t is
the current simulation time. The set of blocks that intersect with the domain
V is precomputed, and only these blocks are launched at a given simulation
time t. Dynamic computational domain adjustment increases the performance
by 30 – 40%.

4 Convergence of the Iterative Algorithms Used to Solve
the Inverse Problem

The inverse problem of wave tomography in the proposed formulation is a non-
linear coefficient inverse problem. The residual functional of a nonlinear problem
is typically non-convex, and thus it has local minima. In this paper, we investi-
gate how the behavior of the residual functional depends on physical parameters,
such as the wavelengths of sounding pulses. The ultimate goal of this work is to
develop algorithms that make it possible to obtain an approximate solution of
the coefficient inverse problem using some initial approximation.

A simple one-dimensional model problem is presented to illustrate how the
wavelength of sounding pulses affects the convergence of gradient minimization
algorithms. The ultrasound pulse propagates through one-dimensional medium
with the speed of sound defined by the relations c(x) = c̄ for |x| ≤ r,
c(x) = c0 for |X| > r. Fig. 4 shows the scheme of propagation of sound-
ing pulses emitted by the source S. The sounding pulse 1 in Fig. 4a propagates
from the source S at a speed of c0. In the inhomogeneous region |x| < r, the
pulse propagates at a speed of c̄. Should there be no inhomogeneity, the sounding
pulse in Fig. 4a would arrive at position 2 at some time T . The difference be-
tween c̄ and c0 in the inhomogeneous region causes the pulse to shift and arrive
at position 3 at the time T . The detector D registers the acoustic pressure as a
function of time U(t). Assuming that the position of the inhomogeneity |x| < r
is known, the inverse problem is to determine the unknown speed of sound c̄ in
the region |x| < r, given the waveform U(t) received by the detector.

We introduce the residual functional Φ(c) = ‖U(t)−u(c, t)‖2, where u(c, t) is
the numerically simulated pulse at the detector position D computed assuming
that the speed of sound in the inhomogeneous region is equal to c. The point
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Fig. 4. Positions of sounding pulses with the inhomogeneity present and with the
inhomogeneity absent (a). Plots of the residual functional for λ = 5 mm (b) and for
λ = 12 mm (c).

of the global minimum of functional Φ(c) is the exact solution of the inverse
problem. The value of the functional at this point is 0.

Let us denote the difference in pulse arrival times caused by the difference
between c and c0 as ∆t(c) = 2(r/c0 − r/c). Fig. 4b,c shows the plots of the
residual functional Φ(∆t) = ‖U(t) − u(c(∆t), t)‖2 as a function of the pulse
arrival time difference ∆t for different wavelengths. Here ‖U(t)−u(c(∆t), t)‖2 =∫ T
t=0

(U(t)− u(c(∆t), t))2 dt.

Fig. 4b shows that for a shorter wavelength the iterative process of mini-
mizing the residual functional converges to the global minimum from the initial
approximation 1 and does not converge from initial approximations 2 and 3. For
a longer wavelength the iterative process converges to the global minimum from
any initial approximation 1,2 or 3, as shown in Fig. 4c.

Hence the use of sounding pulses of at least two different central wavelengths
λ1 and λ2, λ1 > λ2 seems to be a promising approach for expanding the do-
main of convergence of the iterative method. First, a number of iterations of
the gradient method is performed using the longer wavelength λ1. The resulting
approximate solution falls into the domain of convergence of the iterative pro-
cess for the shorter wavelength λ2. Then the residual functional is minimized
via the gradient method using the wavelength λ2. This idea forms the basis
of the proposed dual-frequency method used to solve the problem of acoustic
tomography.

In reality, the inverse problem is three-dimensional. Outside of the object,
the speed of sound is c(r) = const = c0, r ∈ R3. The object is insonified using
the pulses emitted by sources S. Detectors D register the acoustic pressure U(t)
as a function of time. It turns out that the properties of the residual functional
in the three-dimensional case are quite similar to the one-dimensional example
described above.

Fig. 5 shows the positions of wave fronts at some time T . The central wave-
lengths of the pulses are λ = 5 mm and λ = 12 mm for Fig. 5a and Fig. 5b,
respectively. The dotted line 1 in Figures 5a, 5b shows the position of the wave
front at time T in a homogeneous medium, assuming that the object is absent.
It corresponds to the pressure field u(r, T ) computed at the initial iteration,
according to the formulation of the inverse problem (3). The dotted line 2 shows
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Fig. 5. Wavefront of the sounding waves (a,b) and cross-sections of the pressure field
along the A–A line (c,d) for different wavelengths.

the position of the wave front that has passed through the object. It corresponds
to the measured pressure field U(r, T ). The gray area in Figures 5a, 5b corre-
sponds to the pulse width. A cross-section of the pressure field along the A–A
line would be similar to the one-dimensional case.

Fig. 5c,d shows the pressure fields along the A–A line with the object present
and with the object absent, for λ = 5 mm (Fig. 5c) and for λ = 12 mm (Fig. 5d)
respectively. The number “1” denotes the simulated wave u(r, T ) propagating
in a homogeneous medium at a velocity of c0. The number “2” denotes the wave
that has passed through the object.

The pulses with λ = 5 mm do not overlap, and there exists a region 3 between
the wave fronts, where u ≈ 0 and U ≈ 0. Similarly to the one-dimensional case,
the gradient of the residual functional between the measured wave 2 and the
simulated wave 1 in this case is equal to zero. Therefore, the iterative gradient
method used to minimize the residual functional does not converge. If the wave-
length is increased to λ = 12 mm, the waves 1 and 2 overlap. Then the initial
approximation c0 falls into the domain of convergence of the iterative process.

Actual acoustic tomography experiments involve dozens of source positions
and thousands of detector positions. The residual functional (3) is the sum of
the residuals computed for every source-detector pair.

These examples show that choosing an initial approximation is an impor-
tant issue, which affects the convergence of the iterative gradient-based method.
If there is no prior information about the structure of the inhomogeneity, the
known sound speed c0 of the surrounding medium can be used as an initial ap-
proximation. This approach is natural in ultrasonic mammography, where the
sound speed difference between soft tissues and water is less than 10%.

These examples lead to the following conclusions. The following dual-frequency
method to find an approximate solution of the inverse problem can be used to
extend the domain of convergence of the gradient method. The measurements
are performed using sounding pulses with two different central frequencies f1
and f2, f1 < f2. The frequencies f1 and f2 should differ by a factor of 2 to 3.
An approximate solution is found by minimizing the residual functional at the
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lower frequency f1. The frequency f1 is chosen low enough so that an initial ap-
proximation of c0 is sufficient for the gradient descent method to converge. The
obtained solution is used as an initial approximation for the iterative process
that minimizes the residual functional at the higher frequency f2.

5 Numerical Simulations

Fig. 1 shows the scheme of the numerical experiment for the three-dimensional
problem of ultrasound tomography. The sounding pulses are emitted by 24
sources according to the scheme of the experiment in which a rotating mount
with 4 ultrasound transducers steps through 6 positions in 60-degree intervals.
The detectors are located on a cylindrical surface with a diameter and height of
130 mm. The simulated detector array has a pitch of 2 mm. The finite difference
grid size is 448×448×448 points. The total durations of sounding pulses are 5µs
and 12µs, which corresponds to the central wavelengths of 5 mm and 12 mm.

The numerical experiment consisted of solving the direct problem of wave
propagation and computing the acoustic pressure U(s, t) at the detectors located
at points s of a cylindrical surface, and then using the data obtained, U(s, t),
to solve the inverse problem and reconstruct the speed of sound c(r) and the
absorption factor a(r).

Fig. 6. Simulated phantom: speed of
sound c(r) and absorption factor a(r).

Fig. 7. Images {c, a}loc reconstructed us-
ing λ = 5 mm and the initial approxima-
tion c0 = const, a0 = 0.

Fig. 6 shows the cross-sections of the sound speed c(r) and absorption factor
a(r) in the simulated phantom, for which the direct problem was solved. The
acoustic parameters of the phantom were chosen to match typical parameters
of soft tissues: the speed of sound ranges from 1400 to 1600 m·s−1, the absorp-
tion factor ranges from 0 (in water) to 1.2 dB/cm. The ambient sound speed
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Fig. 8. Images {c1, a1} reconstructed us-
ing λ = 12 mm and the initial approxima-
tion c0 = const, a0 = 0.

Fig. 9. Images {c2, a2} reconstructed us-
ing λ = 5 mm and the initial approxima-
tion {c1, a1} shown in Fig. 8.

c0 is 1500 m·s−1. The wave propagation model (1)–(2) assumes the frequency-
independent absorption law.

The phantom contains inclusions ranging in size from 2 to 10 mm with various
sound speeds c and absorption factors a, and an area filled with an anisotropic
texture with spatial frequencies ranging from 0.5 to 3 mm−1. The exact values
of the sound speed and absorption factor of the phantom are denoted as {c̄, ā}.

Figures 7,8, and 9 show the reconstructed images of the sound speed c(r) and
absorption factor a(r) obtained via numerical simulations. In the first numerical
simulation we attempt to reconstruct the coefficients c(r) and a(r) inside the
simulated object using the gradient method with an initial approximation of
c0 = const, a0 = 0. The central wavelength of the sounding pulses was set
to 5 mm. Fig. 7 shows the result of this numerical simulation. The images in
Fig. 7 were obtained at the 100th iteration of the gradient method, after which
the iterative process stopped at the local minimum of the residual functional.
The obtained sound speed and absorption factor are denoted as {c, a}loc. The
global minimum of the functional corresponds to the exact image (Fig. 6) and
the coefficients {c̄, ā}. The value of the functional Φ(c̄, ā) = 0.

In the second numerical experiment the wavelength of the sounding pulses
was increased to 12 mm for the initial approximation c0 to become close enough
to the global minimum of the residual functional. Fig. 8 shows the c(r) and
a(r) images obtained via the gradient method with an initial approximation of
c0 = const, a0 = 0 and λ = 12 mm. This image has a very low spatial resolution.
The approximate solution c(r) and a(r) obtained in the experiment with λ = 12
mm is denoted as {c1, a1}.

Fig. 9 shows the approximate solution {c2, a2} obtained in this experiment via
the gradient method using the initial approximation {c1, a1}. The reconstructed
sound speed image c2(r) is close to the exact image of the phantom (Fig. 6).
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We computed the values of the functional on the linear manifold containing
the exact solution {c̄, ā} and the obtained approximate solution {c, a}loc. This
manifold consists of the elements Xα = (1− α) · {c, a}loc + α · {c̄, ā}.

Fig. 10 shows the plot the residual functional Φ(α) over this linear manifold.
Like in the 1D example, in the 3D case the plot of the residual functional re-
sembles the waveform of the sounding pulse. The approximate solution {c, a}loc
is at a local minimum of the functional (α = 0).

−0.4 0 0.4 0.8

0

200

Φ α( )

α

Fig. 10. Plot of the residual functional Φ(α), λ = 5 mm.

Thus, we showed that a two-stage method of tomographic reconstruction
allows us to expand the domain of convergence of the gradient method and to
obtain a high-resolution sound speed image using zero initial approximation.

We performed our simulations on the Lomonosov supercomputer of Moscow
State University [19] equipped with NVIDIA Tesla X2070 GPU devices, two
devices per computing node, and QDR Infiniband 4x (40 GBit/s) interconnect
network. Single-precision floating point arithmetic was used in 3D computations.
The number of GPU devices employed was equal to that of ultrasound sources
(24). The 3D image was reconstructed in approximately two hours.

6 Conclusions

This paper presents a method for ultrasound tomography imaging of soft tissues
for medical and biological research. Efficient algorithms have been developed
for solving inverse problems of low-frequency tomography on a supercomputer.
The most important issue in ultrasound tomography data interpretation is the
nonlinearity of the coefficient inverse problem.

Our study showed that the lower is the sounding frequency the broader is
the convergence domain of iterative processes. A method is proposed that in-
volves the use of multiple frequency bands. The method employs an iterative
gradient-based minimization algorithm at the higher frequency with the initial
approximation of unknown coefficients obtained by solving the inverse problem
at the lower frequency.

The numerical simulations were performed using the setup where acoustic
pressure is measured on a cylindrical surface. Such a setup can be easily imple-
mented using rotating vertical transducer arrays.

The methods developed can be used to design tomographic devices for dif-
ferential diagnosis of breast cancer. The iterative algorithms used to solve the
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inverse problems of wave tomography can be efficiently parallelized using GPU
clusters. The increasing performance of modern GPU clusters makes them a suit-
able computing device for ultrasound tomographs currently being developed.
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