
Supercomputer Technology for Ultrasound
Tomographic Image Reconstruction:

Mathematical Methods and Experimental
Results

Alexander Goncharsky and Sergey Seryozhnikov(B)

Lomonosov Moscow State University, Moscow, Russia.
gonchar@srcc.msu.ru

s2110sj@gmail.com

Abstract. This paper is concerned with layer-by-layer ultrasound to-
mographic imaging methods for differential diagnosis of breast cancer.
The inverse problem of ultrasound tomography is formulated as a coef-
ficient inverse problem for a hyperbolic differential equation. The scalar
mathematical model takes into account wave phenomena, such as diffrac-
tion, refraction, multiple scattering, and absorption of ultrasound. The
algorithms were tested on real data obtained in experiments on a test
bench for ultrasound tomography studies. Low-frequency ultrasound in
the 100 – 500 kHz band was used for sounding. An important result of
this study is an experimental confirmation of the adequacy of the under-
lying mathematical model. The ultrasound tomographic imaging meth-
ods developed have a spatial resolution of 2 mm, which is acceptable
for medical diagnostics. The experiments were carried out using phan-
toms with parameters close to the acoustical properties of human soft
tissues. The image reconstruction algorithms are designed for graphics
processors. Architecture of the GPU cluster for ultrasound tomographic
imaging is proposed, which can be employed as a computing device in a
tomographic complex.

Keywords: Ultrasound Tomography · Coefficient Inverse Problem · Med-
ical Imaging · GPU Cluster.

1 Introduction

Supercomputer technologies open up new possibilities in medical diagnostics.
One such example is ultrasound tomography. This technology is developed ex-
tensively in the USA, Germany, and Russia [1–4]. Medical imaging, especially the
differential diagnosis of breast cancer, is a promising application of ultrasound
tomography. Wave tomography methods can also be applied to nondestructive
imaging of solids [5].

The inverse problem of wave tomography is nonlinear. Breakthrough results
in the field of solving inverse problems of wave tomography have been obtained
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in recent years. Explicit formulas for the gradient of the residual functional be-
tween the measured and the numerically simulated wave fields in various formu-
lations were derived in the works [6–9]. In our earlier papers [10–12] we derived
a representation for the gradient of the residual functional in terms of a scalar
mathematical model that accounts for diffraction and absorption effects.

Iterative supercomputer-oriented algorithms for reconstructing ultrasound
tomographic images have been developed whose efficiency was confirmed via
solving numerous model problems [13]. Testing algorithms by applying them
to model problems is necessary for design of ultrasound tomography devices.
However, numerical simulations can not assess the adequacy of the underlying
mathematical model and only physical experiments can answer this question.

In this study, algorithms for solving the inverse problems of ultrasound to-
mography in the layer-by-layer formulation are tested on experimental data. For
this purpose, a test bench for ultrasound tomography studies was constructed.
One of the key results of this study is that it demonstrates that the mathemat-
ical model agrees well with real physical processes. Solving inverse problems of
wave tomography using experimental data showed that tomographic methods
can reconstruct inhomogeneities approximately 2 mm in size. Such spatial reso-
lution is quite acceptable for medical imaging. The parameters of the phantoms
used in experiments were close to the acoustic properties of human soft tissues.

The inverse problem of wave tomography is a nonlinear inverse problem with
millions of unknowns. The algorithms developed are designed for GPU clusters
and we used GPU nodes of the “Lomonosov-2” supercomputer at the Moscow
State University [14] to process experimental data. In this paper, we discuss the
architecture of a GPU cluster which can be used as a computing device in a
tomographic complex.

2 Formulation of the Inverse Problem and its Solution
Methods

Figure 1a shows the scheme of a layer-by-layer tomographic examination used in
this study. Object G is submerged in water L with known acoustical properties.
Acoustic sounding pulses are emitted by transducers at positions 1. Figure 1b
shows a typical waveform of a sounding pulse. The scattered ultrasound waves
are measured at positions 2. At each position, the signal is recorded as a func-
tion of time u(t). Figure 1c shows a typical received signal. This scheme of the
experiment allows us to measure both transmitted and reflected waves. The
measurement points lie at surface Γ , which in this case is circular.

The objective is to reconstruct the internal structure of the object using
these measurements. This formulation of the problem is called the time-domain
formulation. The measurements are repeated for multiple horizontal planes, thus
obtaining a layered representation of a 3D object. The inverse problem is solved
independently for each of the horizontal planes z = const.

In this study, we use a scalar wave model, which accounts for all the wave
phenomena, such as diffraction, refraction, multiple scattering and absorption
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Fig. 1. Layer-by-layer tomographic examination: a) placement of emitters and detec-
tors; b) waveform of a sounding pulse; c) waveform of a received pulse

of ultrasound. In the scalar model, the acoustic pressure u(r, t) is described
by a hyperbolic equation. The inverse problem of ultrasound tomography is a
coefficient inverse problem, in which we use the measurements of the wave field
taken at some surface Γ to obtain the coefficients c(r) and a(r) of the wave
equation:

c(r)utt(r, t) + a(r)ut(r, t)−∆u(r, t) = 0; (1)

u(r, t)|t=0 = F0(r), ut(r, t)|t=0 = F1(r). (2)

Here, c(r) = 1/v2(r), where v(r) is the speed of sound; a(r) is the absorp-
tion factor in the medium; r = {x, y} is the position of the point inside the
reconstructed 2D plane, and ∆ is Laplacian with respect to r.

This formulation assumes a transparent (non-reflecting) boundary of the
computational domain. A non-reflecting boundary condition [15] in the form
∂u/∂n = −c−0.5∂u/∂t is applied at the boundary. Here, n is a vector pointing
towards the ultrasound emitter. The initial conditions F0(r) and F1(r) repre-
sent the wave field radiated from the emitter at the initial time of the numerical
simulation. We obtain them via the time-reversal method [16] by solving equa-
tion (1) in reverse time with boundary condition u(s, t)|s∈Γ = U0(s, t), where
U0(s, t) are the data measured at surface Γ in a homogeneous medium without
the object.

The coefficient inverse problem considered is ill-posed. The methods for solv-
ing such problems were developed in [17–19]. We formulate the inverse problem
as that of minimizing the residual functional

Φ(u(c, a)) =
1

2

T∫
0

∫
S

(u(s, t)− U(s, t))2 dsdt (3)

for its argument (c, a). Here U(s, t) are the data measured at surface Γ for the
time period (0, T ), u(s, t) is the solution of the direct problem (1)–(2) for the
given c(r) = 1/v2(r) and a(r). The residual functional is the sum of the residuals
(3) obtained for each position of the emitter.
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Representations for the gradient of the residual functional in various for-
mulations were obtained by the authors in [9, 13]. The gradient Φ′(u(c, a)) =
{Φ′c(u), Φ′a(u)} of the functional (3) with respect to the variation of the sound
speed and absorption factor {dc, da} has the form:

Φ′c(u(c)) =

T∫
0

wt(r, t)ut(r, t) dt, Φ′a(u(a)) =

T∫
0

wt(r, t)u(r, t) dt. (4)

Here u(r, t) is the solution of the direct problem (1)–(2), and w(r, t) is the
solution of the “conjugate” problem with the given c(r), a(r), and u(r, t):

c(r)wtt(r, t)− a(r)wt(r, t)−∆w(r, t) = E(r, t); (5)

w(r, t = T ) = 0, wt(r, t = T ) = 0; (6)

E(r, t) =

{
u(r, t)− U(r, t), where r ∈ Γ and U(r, t) is known;
0, otherwise.

(7)

Non-reflecting boundary condition [15] is applied at the boundary of the
computational domain. Thus, to compute the gradient (4) we need to solve the
direct problem (1)–(2) and the “conjugate” problem (5)–(7).

Given a formula for the gradient (4), we can construct various iterative al-
gorithms that minimize the residual functional, such as the steepest descent
method. Let us assume that the coefficients c(m) and a(m) for m-th iteration
have been determined. To construct the next iterative approximation, we com-
pute the gradient {Φ′c(u), Φ′a(u)} at point {c(m), a(m)} and solve the problem
of minimizing a one-dimensional functional along the direction of the gradient.
As the next iterative approximation, we choose the point {c(m+1), a(m+1)} =
arg min

α>0
Φ(c(m) − αΦ′c, a(m) − αΦ′a), and so on.

Minimization methods based on the explicit formula for the gradient allow us
to propose efficient numerical algorithms for the approximate solution of inverse
problems of wave tomography. The gradient method has regularizing properties
and stops when the value of the residual functional becomes equal to the error
of the input data [18].

To solve equations (1)–(2) and (5)–(7), we use the finite-difference time-
domain method (FDTD) on uniform grids. We introduce a uniform discrete grid
with a space step of h and a time step of τ :

xi = ih, 0 ≤ i < n; yj = jh, 0 ≤ j < n; tk = kτ, 0 ≤ k < m.

The parameters h and τ are related by the Courant stability condition
√

2c−0.5τ <
h, where c−0.5 = v is the speed of sound. To approximate the equation (1) we
use the following second-order finite difference scheme:

cij
uk+1
ij − 2ukij + uk−1ij

τ2
+ aij

uk+1
ij − uk−1ij

τ
−
∆ukij
h2

= 0. (8)
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Here ukij = u(xi, yj , tk) are the values of u(r, t) at point (i, j) at the time step
k; cij and aij are the values of c(r) and a(r) at point (i, j). The first term
approximates c(r)utt(r, t), the second — a(r)ut(r, t). Discrete Laplacian ∆ is
computed using a fourth-order optimized finite difference scheme [20]. Collecting
the terms with uk+1

ij for (k + 1)-th time step, we obtain the explicit formula for
simulating the ultrasound wave sequentially in time. A similar scheme is used to
solve the equations (5)–(7) for w(r, t) in reverse time.

The gradient of the residual functional is computed by formula (4). An ex-
plicit formula allows us to use gradient-based mininization methods, such as the
steepest descent method [21]

3 GPU Implementation of the Layer-by-layer
Tomographic Image Reconstruction Algorithm

The numerical method was implemented on graphics processors using OpenCLTM

technology. An iterative gradient method is used for image reconstruction. At
the first iteration, we use the initial approximation for the unknown coefficients
c(0)(r) = 1500 m·s−1, a(0)(r) = 0. The following steps are performed at each
gradient descent iteration (m):

1. The direct problem (1)–(2) is solved and the wave field at the boundary
u(s, t), s ∈ Γ is stored in memory.

2. The “conjugate” problem (5)–(7) is solved in reverse time. To compute u(r, t)
we use the boundary data u(s, t) previously stored, and to compute w(r, t)
we use the measured data U(s, t), s ∈ Γ . The gradient Φ′c, Φ

′
a is computed

by formula (4), summed over all the emitter positions and accumulated over
time.

3. The gradient descent step γ is determined. Its value is adjusted automati-
cally: if the residual decreases (Φ(m) < Φ(m−1)), then γ is increased, and vice
versa.

4. The current approximation is updated: c(m+1) = c(m) + γΦ′c, a(m+1) =
a(m) + γΦ′a.

The most computationally expensive tasks are solving the “conjugate” prob-
lem (5)–(7) and computing the gradient. Figure 2 illustrates the GPU implemen-
tation of the algorithm. To adapt the algorithm for GPU, the task is split into
independent thread blocks. The gradient is summed over all the emitter posi-
tions, and therefore an efficient solution is to compute the gradient sequentially
for each emitter position, accumulating the partial sum in the shared memory
of the GPU.

Each thread block processes an LX × LY area of the L × L image, where
LX is equal to the number of threads in a block, and LY is determined by the
amount of available shared memory: LY = SharedMemorySize/(LX×8). The
number of threads per block LX is chosen to optimize the GPU workload. For
tested devices, the optimum value of LX was found to be equal to the maximum
supported number of threads (512). Therefore, LY ≤ 12 for a typical NVidia
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Fig. 2. GPU-optimized algorithm of computing the gradient of the residual functional

device with 48 KB of shared memory. We used LX = L for image sizes L ≤ 512
and LX = L/2 for image sizes 512 < L ≤ 1024.

Inside each LX×LY data block the computations are carried out sequentially
along the Y-axis (Y-marching method) and sequentially for each emitter posi-
tion Sn, n = 1, ..., N . The Y-marching method ensures high automatic caching
efficiency due to the sequential memory access pattern and allows increasing the
stencil size with no significant performance loss. At each step along the Y-axis,
the value of uk−1ij and a vector uj+2 containing the acoustic pressure values for
5 consecutive points along the X-axis are loaded into the registers. Since the
discrete Laplacian coefficient matrix is symmetric [20], only 3 components per
row are stored in the registers for a 5× 5-point finite difference scheme.

Acoustic pressure uk+1
ij at the next time step is computed by formula (8),

which can be expressed as a scalar product with some coefficients bm. The coeffi-
cients are constant for all points of the stencil except the center point (i, j). The
wave field wk+1

ij is computed using a similar formula. The gradient {u ·wt, ut ·wt}
is then computed and added to the partial sum over emitter positions, which
is accumulated in the shared memory. The process is repeated for all emitter
positions.

The data are stored in a 3D array X×Y×S, where S corresponds to the
emitter position. A 2D subarray for one position Sn contains the values of u(r, t)
and w(r, t) for three time steps. Computations with experimental data showed
that 32-bit floating point type is sufficient for data representation. Thus, the
amount of memory required to store all the data is 24×L2×N bytes, where L is
the grid size along one dimension, and N is the number of emitter positions. For
24 positions and L = 768, the volume of data amounts to 350 MB. Additionally,
32 ×N × T ≈ 100 MB of global memory are used to store the values of u(r, t)
and w(r, t) at the measurement surface Γ . Here T is the number of time steps
in the simulation, which is on the order of L. Thus, modern graphics cards with
at least 1 GB of memory can host all the data in the global memory, eliminating
the need to access the system RAM throughout the simulation.
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The algorithm developed was tested on NVidia GeForce GTX Titan and
Tesla K40s devices. The program profiling statistics are listed in Table 1. We
used OpenCL profiling events to obtain start and end times of each computa-
tional kernel and data transfer operation. The statistics were accumulated for
10 gradient descent iterations on a GTX Titan device.

Table 1. Program profiling statistics (GTX Titan, 768×768 grid, 10 iterations)

Runs Time, µs Min, µs Max, µs Total % Function

5040 1924 1866 2425 9699.17ms 21.16% ForwardWave

5020 6340 6303 7441 31.83s 69.44% BackwardWave

10060 271 181 766 2733.53ms 5.96% BoundaryCond

5020 31 25 41 156.72ms 0.34% LoadBound

5040 32 24 678 161.89ms 0.35% SaveBound

5020 57 53 70 287.69ms 0.63% LoadExData

5020 36 35 86 183.14ms 0.40% SaveExData

264 2313 1 29224 610.87ms 1.33% Data transfers

The most time-consuming functions are wave simulations that solve the direct
(ForwardWave) and the conjugate (BackwardWave) problems. The time spent in
other functions amounted to less than 10%, which means near-linear scaling with
respect to the problem size.

Table 2 lists the memory requirements for different problem sizes and the
computation times for tested devices. The number of emitter positions was
N = 24, and 40 gradient descent iterations were performed in each test run.
These parameters correspond to the values used to reconstruct the images from
experimental data.

Table 2. Memory requirements and computational times for different problem sizes

Grid size (L) 512 768 1024

GPU memory used, MB 220 450 780

Time, GTX Titan 114s 258s 477s

Time, Tesla K40s 130s 294s 562s

The total number of operations per problem is proportional to L3 ·N , and the
amount of memory is proportional to L2 ·N . The experimental reconstructions
were performed using a grid size of L = 768. For this problem size, reconstructing
one horizontal layer using one GPU device takes approximately 5 minutes.

One of the aims of this study is to assess the parameters of a GPU cluster
that can be used as a computing device for medical imaging. The benchmarking
results showed that to reconstruct the images for multiple layers in practically
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feasible time, which is 15 – 30 minutes, the number of graphics processors in the
cluster should amount to 1/3 – 1/4 of the number of layers. The computations for
each layer are independent. To obtain the images for 30 – 40 layers, a GPU cluster
containing 8 – 16 devices would be required. Since the memory requirements for
layer-by-layer image reconstruction are quite low, the cluster can include 4 –
8 dual-GPU boards such as GeForce GTX 690. Devices equipped with High
Bandwidth Memory (HBM) have approximately 3 times higher performance
than GDDR5-equipped devices, so a cluster of 4 such devices can perform the
image reconstruction in a reasonable time. Such GPU-cluster would be compact
and inexpensive, and can be incorporated as a computing device in a diagnostic
facility.

4 The Test Bench for Ultrasound Tomography Studies

The experimental measurements were carried out using a custom-made test
bench for ultrasound tomography studies, shown in Fig.3. The test bench is de-
signed for ultrasound tomographic imaging of 3D objects with parameters close
to the acoustical properties of soft tissues. The ultrasound emitter 1 and the re-
ceiver 2 can be rotated using the motors 3 around the object 4 and moved in the
vertical direction. The maximum size of the inspected object is approximately
12×12 cm.

A broadband ultrasound transducer with a central frequency of 400 kHz was
used as an emitter. The frequency spectrum of the sounding pulses covers the
100 – 500 kHz band. The duration of the sounding pulses was approximately 2µs.
Teledyne Reson TC4038 hydrophone was used as a receiver.

Figure 4 shows the functional scheme of the test bench. Electrical pulses are
generated by the arbitrary waveform generator and amplified by the power am-
plifier. The amplitude of the pulses at the transducer is ±80V. Acoustic signals
are received by the hydrophone, amplified by the preamplifier and digitized us-
ing the ADC module. The digitized data are collected by a PC. The motors, the
waveform generator, and the ADC module are synchronized by a controller unit.

5 Ultrasound Tomographic Image Reconstruction Using
Experimental Data

For ultrasound tomographic image reconstruction experiments we used a cylin-
drical phantom made of soft silicone, 56 mm in diameter and 130 mm in height.
Figure 5 shows the 3D model of the phantom. Phantom 1 contains a tilted 10 mm
cylindrical hole 2, and a 15 mm vertical cylindrical hole 3. The phantom is affixed
to the mount with three metal pins 1 mm in diameter.

The speed of sound in the silicone is ≈ 1400 m·s−1; in water outside of the
phantom and inside the holes — 1500 m·s−1. Figure 5b shows the horizontal
sound speed cross-section of the phantom in the z=30 mm plane. Figure 6 shows
the reconstructed sound speed images of the phantom in different horizontal
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Fig. 3. The test bench for ultrasound tomography studies: a) 3D model, b) photo of
the mechanical assembly

cross-sections. The reconstructed speed of sound inside the holes is equal to the
speed of sound in water (1500 m·s−1). The 7 mm rod with a higher speed of
sound is clearly resolved in all cross-sections. The reconstructed speed of sound
inside the rod is 1800 m·s−1. The tilted hole changes its position from image to
image, as the vertical position of the emitter and the receiver changes. The 1 mm
metal pins are clearly visible in all cross-sections.

As is evident from the reconstructed images in Fig.6, the spatial resolution
is approximately 2 mm, while the sounding wavelength is approximately 4 mm.
The sound speed difference between the silicone material and water amounted
to ≈ 5%. Yet, the algorithms developed reconstruct the sound speed image with
high precision even for a low-contrast object.

The size of the data obtained in a tomographic examination amounted to
35 MB per horizontal layer. The data for 24 emitter positions and 500 receiver
positions recorded over a time period of 200µs with 14-bit precision at a sampling
rate of 5 MSPS were used to reconstruct the image in each layer. The grid step
was 0.4 mm and the number of gradient descent iterations required to obtain the
images amounted to 30 – 40. Image reconstruction was performed on GPU nodes
of the “Lomonosov-2” supercomputer at the Moscow State University.

One of the drawbacks of layer-by-layer ultrasound tomography is that the
spatial resolution along the Z-axis is lower than the spatial resolution in X–Y
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Fig. 5. The phantom: a) 3D model, b) exact horizontal sound speed cross-section at
z=30 mm

planes. This is due to the fact that in the layered model only waves propagat-
ing along the reconstructed plane are taken into account. In order to increase
the resolution, out-of-plane wave sources must be used as well. This scheme of
tomographic examination requires solving a three-dimensional inverse problem,
which is much more computationally expensive than a layer-by-layer problem.
The numerical simulations presented in [13, 22] showed that the 3D scheme can
be implemented in practice and can provide higher image reconstruction qual-
ity than the layered scheme. However, a 3D setup requires much more complex
measuring equipment.

6 Conclusion

The main result of this study is a successful application of the ultrasound tomog-
raphy algorithms developed to real experimental data. Numerous experiments
performed on a test bench for experimental tomographic studies showed that
the scalar wave model based on a second-order hyperbolic equation can be used
to reconstruct images of real objects. The tomographic methods developed have
high resolution, which is quite acceptable for medical imaging. The experiments
were carried out using phantoms with parameters close to the acoustic properties
of human soft tissues.
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Fig. 6. Reconstructed sound speed cross-sections of the phantom

The use of GPU clusters is the most practically feasible option for implement-
ing the iterative solution algorithms for 2D inverse problems. A finite-difference
method can be efficiently parallelized using data-parallel architectures such as
SIMD and GPU. Experiments showed that single-precision floating-point arith-
metic is sufficient for solving direct and inverse problems. Thus, widely available
GPU devices can be used for image reconstruction.

The algorithms and the scheme of experiments are designed for implemen-
tation on a dedicated GPU cluster The experimental setup assumes detailed
recording of the signal on a cylindrical surface for multiple emitter positions.
The number of measurement points in each horizontal layer amounts to 500. At
the same time, the number of emitter positions is small — approximately 20
in each layer. Thus, an image of a single layer can be reconstructed by a single
GPU device in a short time. We propose the architecture of a GPU cluster with
a relatively small number of devices proportional to the number of reconstructed
layers of the 3D image. The properties of such a GPU cluster, such as the size,
power consumption, and cost, allow it to be used in the new medical ultrasound
tomographic facilities being developed.
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