
Using Resources of Supercomputing Centers
with Everest Platform

Sergey Smirnov, Oleg Sukhoroslov � Vladimir Voloshinov

Institute for Information Transmission Problems of the Russian Academy of Sciences,
Moscow, Russia

sasmir@gmail.com, sukhoroslov@iitp.ru, vv voloshinov@iitp.ru

Abstract. High-performance computing plays an increasingly impor-
tant role in modern science and technology. However, the lack of conve-
nient interfaces and automation tools greatly complicates the widespread
use of HPC resources among scientists. The paper presents an approach
to solving these problems relying on Everest, a web-based distributed
computing platform. The platform enables convenient access to HPC re-
sources by means of domain-specific computational web services, devel-
opment and execution of many-task applications, and pooling of multiple
resources for running distributed computations. The paper describes the
improvements that have been made to the platform based on the expe-
rience of integration with resources of supercomputing centers. The use
of HPC resources via Everest is demonstrated on the example of loosely
coupled many-task application for solving global optimization problems.

Keywords: High-performance computing · Clusters · Many-task appli-
cations · Distributed computing · Web services · Global optimization

1 Introduction

Computational methods are now widely used for solving complex scientific and
engineering problems. These methods often require a large amount of compu-
tations and the use of high-performance computing (HPC) resources. Such re-
sources can be provided by clusters operated on-premises, supercomputing cen-
ters, distributed computing infrastructures or clouds. Supercomputing centers
represent an important source of HPC resources. In contrast to on-premises clus-
ters, supercomputers have significantly more resources. However these resources
are usually shared among many users and projects, which can lead to queues
and high wait times. In contrast to distributed computing infrastructures, super-
computers support efficient execution of tightly coupled parallel applications. In
comparison to public clouds, supercomputers use specialized hardware and are
generally free for scientific projects.

The wide use of HPC resources among scientists is complicated due to a
number of problems. There is a lack of convenient interfaces for running com-
putations on such resources. Typically this procedure involves copying of input
data, compilation of a program, preparing a job script, submission of a job via a

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

649

batch system, checking the job state and collecting the job results. All these steps
should be performed via a command line environment. Such environments and
batch systems are unfamiliar and too low-level for many researchers, requiring
a considerable effort to master and use them instead of focusing on a problem
being solved. This can demotivate researchers with less technical background. At
the same time, there is a lack of tools for automation of routine activities that
can be useful even for advanced users. Such tools are necessary for execution of
single jobs, many-task applications such as parameter sweeps or complex work-
flows involving multiple jobs with dependencies. Also there is a need for tools
supporting reliable execution of long-running computations or massive compu-
tations spanning multiple resources. In order to be efficient, such tools should
take into account various characteristics and policies of HPC resources.

In this paper, we present an approach for solving the aforementioned prob-
lems using Everest [1, 18], a web-based distributed computing platform. A distin-
guishing feature of Everest is the ability to serve multiple distinct groups of users
and projects by implementing the Platform as a Service (PaaS) cloud computing
model. The platform is not tied to a single computing resource and allows the
users to attach their resources and bind them to the applications hosted by the
platform. These features make it possible to use the publicly available platform
instance without having to install it on-premises. The use of Everest enables con-
venient access to HPC resources by means of domain-specific computational web
services. It also allows one to seamlessly combine multiple resources of different
types for running massive distributed computations.

The paper is organized as follows. Section 2 discusses the related work and
compares it with the presented approach. Section 3 provides an overview of the
Everest platform and its relevant features. Section 4 describes the integration of
HPC resources with Everest including improvements of platform components.
Section 5 demonstrates the use of Everest for running a loosely coupled many-
task application for solving global optimization problems on HPC resources.
Section 6 concludes the paper and discusses the future work.

2 Related Work

The use of web technologies for building convenient interfaces to HPC systems
has been exploited since the emergence of the World Wide Web. For example
[7] describes a user-friendly web interface for reconstruction of tomography data
in a clinical environment backed by the Cray T3D massively parallel computer.
In [6] authors describe a Web/Java based framework for remote submission of
parallel applications on HPC clusters.

The emergence of grid computing [8] and the web portal technologies en-
abled the development of grid portals [21] and science gateways [5] facilitating
the access to distributed computing resources and offering additional services
such as collaborative capabilities. One of the early examples is the NPACI Hot-
Page portal [20] consisted of a set of services for accessing the grid and individual
HPC resources via a web browser. In [14] authors describe Gateway, a compu-

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

650

tational web portal system implementing a set of generic core services such as
user management, security, job submission, job monitoring, file transfer, etc.,
that were used to build web interfaces for running applications from different
domains on HPC systems. A number of similar frameworks for development of
computational portals were proposed [26], which facilitated the development of
many specialized portals in different domains of computational science.

While providing convenient web interfaces to HPC systems or specific com-
putational packages, the first generation systems had the following drawbacks.
First, it was difficult to combine multiple packages, run multi-step workflows and
other many-task applications [15] typically found in science. This has lead to de-
velopment of web based environments supporting the description and execution
of user-defined workflows [10, 4, 3]. Second, the extension of portal functional-
ity, e.g. publishing new applications, was difficult and limited to administrators
only. While more recent systems [12, 4] introduced standard tools for application
development, the deployment is still limited to privileged users. Third, classic
portals were tightly coupled with particular HPC systems or a limited set of
resources configured by administrators. Current science gateways support differ-
ent types of resources ranging from supercomputers to clouds, but still not allow
users to attach and access their own resources and accounts via the gateway.

In this paper we use Everest [18], a web-based distributed computing platform
that addresses the mentioned drawbacks.

3 Everest Platform

Everest [18, 1] is a web-based distributed computing platform. It provides users
with tools to publish and share computing applications as web services. The
platform also manages the execution of applications on external computing re-
sources attached by the users. In contrast to traditional distributed computing
platforms, Everest implements the PaaS model by providing its functionality
via remote interfaces. A single instance of the platform can be accessed by many
users in order to create, run and share applications with each other.

Everest supports the development and execution of applications following a
common model. An application has a number of inputs that constitute a valid
request to the application and a number of outputs that constitute a result of
computation corresponding to some request. Upon each request Everest creates a
new job consisting of one or more tasks generated by the application from the job
inputs. The tasks are executed by the platform on computing resources specified
by a user. The dependencies between tasks are currently managed internally by
the applications. The results of completed tasks are passed to the application
and are used to produce the job outputs or new tasks if needed. The job is
completed when all its tasks are completed. The described model is generic
enough to support a wide range of computing applications.

Everest users can publish arbitrary applications with a command-line inter-
face via the platform’s web interface. Upon the invocation of the application
the platform produces a single task corresponding to a specific command run.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

651

It is possible to dynamically add new tasks or invoke other applications from a
running application via the Everest API. This allows users to create and pub-
lish complex many-task applications with dependencies between tasks, such as
workflows. Everest also includes a general-purpose application for running a
large number of independent parametrized tasks such as parameter sweeps [23].
Each application is automatically published as a RESTful web service. This
enables programmatic access to applications, integration with third-party tools
and composition of applications into workflows. The platform also implements
a web interface for running the applications via a web browser. The application
owner can manage the list of users allowed to run the application.

Instead of using a dedicated computing infrastructure, Everest performs the
execution of applications on external resources attached by users. The platform
implements integration with standalone machines and clusters through a devel-
oped agent [16]. The agent runs on a resource and acts as a mediator between it
and Everest enabling the platform to submit and manage tasks on the resource.
The agent performs routine actions related to staging of input files, submitting
a task, monitoring a task state and collecting the task results. The platform
also supports integration with grid infrastructures [16], desktop grids [19] and
clouds [24]. Everest users can flexibly bind the attached resources to applica-
tions. In particular, a user can specify multiple resources, possibly of different
type, for running an application [16]. In this case the platform performs dynamic
scheduling of application tasks across the specified resource pool.

4 Integration of HPC Resources with Everest

In this section, we describe the improvements that have been made in Everest to
support the efficient use of HPC resources via the platform. These developments
are based on the experience of integration with several supercomputing centers
in Russia including the Data Processing Center of NRC Kurchatov Institute
(NRC KI) and the Supercomputer Simulation Laboratory of South Ural State
University (SSL SUSU).

4.1 Agent Improvements

The integration of computing resource with Everest is achieved by means of the
Everest agent [16]. The main functions of the agent are execution of tasks on the
resource and provision of information about characteristics and current status of
the resource. The agent supports interaction with various types of resource man-
agers through the extensible adapter mechanism. The adapter receives generic
resource requests and translates these requests into commands specific to a par-
ticular resource manager. There are three adapters have been developed for HPC
clusters that support integration with TORQUE, Slurm and Sun Grid Engine.

In case of a cluster, the agent should by deployed by a user on the submission
node. Since the agent has minimal dependencies and system requirements, it can
be quickly deployed by the users without special skills and superuser privileges.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

652

We have not found any serious problems when launching the agent on the used
supercomputing centers. Basically, the agent was able to operate in environments
with old Python versions and hard network restrictions.

However, while setting up the agent on the HPC4 supercomputer at NRC KI
we have found that the agent can not submit more than 64 concurrent jobs. It
was due to the limit on the maximum number of jobs per user imposed by the
administrators via the Slurm manager. Thus the basic Slurm adapter running a
single job per Everest task was not able to fully utilize the user quota on this
system. In case of loosely coupled many-task applications with single-core tasks,
such as described in Section 5, it was possible to utilize only 64 cores at once.

Two possible approaches to solving this problem were considered that relied
on advanced features of Slurm: job arrays and complex many-task job scripts.
Job arrays is a mechanism for managing collections of similar jobs in Slurm. It
allows to submit and manage such jobs faster. However every job in the array is
still treated by Slurm as a single job. So it does not allow to overcome the imposed
jobs per user limit. Another option is to create complex Slurm jobs consisting
of multiple tasks started with srun command inside a job script submitted with
sbatch. Using this feature a set of Everest tasks can be submitted as a single
Slurm job requesting resources needed to run all these tasks. In the job script a
new Slurm task is created for every Everest task by calling the srun command.

The second approach was implemented in the new advanced Slurm adapter.
The tasks received by the adapter from the agent are grouped by their Everest
job ID and are accumulated. If a specified number of tasks belonging to the same
job has accumulated, or no new tasks have arrived within the specified time, a
complex job containing accumulated tasks is submitted to Slurm.

Below is an example of a job script generated by the adapter for two tasks:

#!/bin/bash

#SBATCH -D TASK_DIR/job1-2

#SBATCH -e srstderr

#SBATCH -o srstdout

#SBATCH -p hpc4-3d

#SBATCH -c 6

#SBATCH -n 2

(srun --exclusive -D TASK_DIR/job1-2 --output TASK_DIR/job1-2/stdout \

--error TASK_DIR/job1-2/stderr -n1 -N1 bash TASK_DIR/job1-2/jobfile

_ECODE=$?

echo errorcode 0 $(ps -o etime= -p "$$") $_ECODE

exit $_ECODE) &

(srun --exclusive -D TASK_DIR/job1-1 --output TASK_DIR/job1-1/stdout \

--error TASK_DIR/job1-1/stderr -n1 -N1 bash TASK_DIR/job1-1/jobfile

_ECODE=$?

echo errorcode 1 $(ps -o etime= -p "$$") $_ECODE

exit $_ECODE) &

wait

The -exclusive switch provides a uniform distribution of task processes to
cluster nodes that have been allocated by Slurm for the job. To track the com-

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

653

pletion of a task, immediately after the srun call is completed, its return code
is printed along with the sequence number of the task. The srun call is grouped
with these operations using the parentheses operator, so that the group of com-
mands is executed in a separate bash subshell. The ampersand operator allows
tasks to be started concurrently while the wait call blocks further execution
until all srun calls are completed.

Checking the state of tasks running inside a complex Slurm job is carried out
in two stages. First, the adapter obtains the status of the job via the scontrol

command. If the job is running, the state of individual tasks is checked by reading
the srstdout file, where the job script prints the return codes of completed tasks.
Thus the agent can process completed tasks before the whole job has completed.

While Everest supports the cancellation of jobs and tasks, in the described
implementation it is difficult to stop the individual tasks. Therefore the cancel-
lation is done for the entire Slurm job containing the tasks being canceled.

There are a number of other improvements that has been made in the agent
and the Slurm adapter, such as automatic tasks directory cleanup, handling of
job submission failures and propagation of environment variables.

The work on integrating the Tornado supercomputer [11] at SSL SUSU is
ongoing right now. Because this system is quite overloaded, the calls to Slurm
command line utilities can fail with a timeout. This is a new challenge because
some rework of the agent’s internals is needed to support such timeouts.

4.2 Supporting Advanced Resource Requirements

A significant limitation of Everest related to running parallel applications on
HPC resources was the lack of explicit support for resource requirements. By
default, all Everest tasks submitted via the agent on a resource were run as single-
core jobs in a predefined queue. It was possible to change the number of CPU
cores per task, but only on the level of the agent and for all tasks submitted via it.
The execution of a parallel application with specific requirements for the number
of nodes, processes per node and system resources required the development of
an auxiliary script, which complicated publishing of such applications in Everest.

The aforementioned limitation was removed by enabling the Everest users to
specify the application resource requirements. A number of new parameters were
added to the configuration of Everest application such as the number of CPU
cores per node (default is 1), the maximum number of CPU cores per node, the
number of nodes (default is 1), the maximum number of nodes, the total amount
of memory, the amount of memory per core and the wall clock time limit.

The application developer can specify the values of these parameters and op-
tionally allow the users to override some of them when running the application.
This approach is flexible enough to support the various use cases. The default
values correspond to the previously supported case of a single-core task. Since
for many applications the resource requirements depend on the input data, it is
desirable to allow the users to tune these parameters according to their prob-
lems. A possible future improvement would be to allow application developers to
provide performance models that can be used to automatically compute runtime

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

654

settings for a given problem. In cases where the problems have a fixed size or
resources are limited, it makes sense to use only the predefined runtime settings.

The platform and the agent were modified to take into account the described
resource requirements during the task scheduling and execution. The require-
ments are embedded in each task and are examined during the resource selection.
In order to do this, the agent was modified to provide the additional informa-
tion about the resource, such as number of nodes, cores and memory per node,
available queues with their limits and states. Everest scheduler matches this in-
formation with the task requirements in order to select a suitable resource and
a queue for the task execution. After the resource is selected, the final resource
requirements of the task are computed and passed along with the task to the
remote agent. The agent was modified to take into account these requirements
during the submission of the task to a local resource manager. Currently, this
functionality is implemented in the advanced Slurm adapter, which translates
the task requirements to the corresponding Slurm options.

5 Experimental Evaluation Using Global Optimization

In this section, an application use case is presented which demonstrates the use of
HPC resources via Everest for running loosely coupled many-task applications.

For many years the branch-and-bound (B&B) algorithm for discrete and
global optimization has been considered as a challenge for parallel computing [2].
Most of known implementations for distributed computing environments follow
the so called fine-grained approach and low-level parallelization. Here the parallel
search tree traversal is coordinated by a master process delegating searching in
the subtrees to a number of slave processes. To achieve a good load balancing the
master performs dynamic redistribution of the work among slaves which implies
intensive two-way data exchanges between the processes. The master also keeps
track of a global incumbent value. This approach has drawbacks: the complexity
of implementation; the need for low level communication between B&B solvers;
usually it requires a homogeneous computing environment, e.g. cluster.

DDBNB (Domain Decomposition B&B) is an Everest application which im-
plements an alternative approach based on a coarse-grained parallelism and pre-
liminary decomposition of a feasible domain of the problem by some heuristic
rules. Subproblems obtained via decomposition are solved by a pool of stan-
dalone B&B solvers running in parallel. The incumbent values found by each
solver are intercepted and delivered to other solvers in order to speed up the
traversal of B&B search tree. Current implementation of DDBNB1 is based on
SCIP and CBC open source solvers. Incumbent values exchange is based on a
special messaging service implemented in Everest. More details can be found in
[25, 17]. DDBNB is an example of loosely coupled many-task applications [15].

Initially DDBNB has been tested by solving a well known Travelling Salesman
Problem formulated as a mixed-integer linear problem [25, 17]. The experiments

1 https://github.com/distcomp/ddbnb

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

655

conducted in a heterogeneous distributed environment with standalone servers
and virtual machines (up to 28 CPU cores in total) have demonstrated promising
results. The described integration with HPC resources allowed to try DDBNB for
solving hard global optimization problems requiring more computing resources.

Two well known problems in combinatorial geometry, which may be treated
as global optimization problems, have been considered: the so called Tammes2

and Thomson3 problems. Both problems in their original form concern the ar-
rangement of N points (xi, i=1:N) on a unit sphere in IR3:
(Tammes) to maximize the minimal distance between any pair of points xi, xj

y → max
y∈IR,xi∈IR3, i=1:N

s.t. :

y6 ‖xi − xj‖, (16i<j6N) , ‖xi‖=1 (i=1:N) ;

(Thomson) to minimize electrostatic Coulomb energy of unit charges put in xi:∑
16i<j6N

1
‖xi−xj‖ → min

xi∈IR3, i=1:N
s.t. : ‖xi‖=1 (i=1:N) .

Both problems are the well known challenges for computer science. It is hard
to proof the global optimality of a given set of points {xi, i=1:N} even for
small values of N, e.g. Tammes problem has computer-assisted proof for N614
[13]. This proof substantially relies on the problem’s specifics and is based on an
enumeration of millions of the so called irreducible contact graphs.

DDBNB application enables one to try another, rather general approach. It
is based on the implementation of the B&B algorithm for mathematical pro-
gramming problems with polynomial in constraints and objective function in
the SCIP solver [9, 22]. Both problems may be reduced to the proper form:
Tammes - minimize the maximum of scalar products xT

i xj for any i, j:16i<j6N :

z → min
xi,z

s.t. :

xT
i xj=

∑
d=1:3

xi,dxj,d 6 z, (16i<j6N) ;

‖xi‖2 =
∑

d=1:3

(xi,d)
2

= 1, z∈IR, xi∈IR3, i=1:N.

(1)

Thomson - via the auxiliary variables for the values of Coulomb energy:

N∑
i,j=1,i<j

zij → min
xi,zij

s.t. :

z2ij (xi − xj)
T

(xi − xj) = 1 (16i<j6N) ;

xT
i xi = 1 (i=1:N) , xi ∈ IR3, zij∈IR.

(2)

It is worth to mention that in addition to major constraints, some auxiliary
constraints have been added to reduce the number of redundant solutions that

2 http://neilsloane.com/packings/
3 http://www-wales.ch.cam.ac.uk/∼wales/CCD/Thomson/table.html

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

656

might be obtained by 3D rotations, mirror transformations and renumbering of
points. For example, the first point is always fixed as x1=(0, 0, 1).

The first attempts to solve the Tammes problem by a standalone single-
threaded SCIP process were failed even for N=8. The solver running with default
settings quickly occupies a lot of memory (29 GB in 45 minutes) to store the
search tree data. By that time, the difference between the lower bound and the
incumbent value was more than 90%, i.e. the B&B was far from completion.

The further optimizations are based on the understanding of how SCIP han-
dles non-convex polynomial constraints [9, 22]. Because any polynomials may be
converted to a sum of bilinear summands by introducing additional variables
and constraints, it is enough to explain how SCIP handles a bilinear function
in constraints. SCIP uses the so called McCormik envelopes which give convex
lower bound and concave upper bound (both are piecewise linear) for a bilinear
function on a rectangle (Fig. 1).

Fig. 1. McCormik convex lower bound and concave upper bound for bilinear function.

The smaller the diameter of the rectangle the more is the accuracy of convex
approximations and the better is the lower bound for global optimum value
given by solving of relaxed convex subproblems. Thus the greater the number of
“small” rectangles, the higher the accuracy of the B&B algorithm. As a rough
approximation, assume that the memory consumption is proportional to the
current number of rectangles overlapping the feasible domain in problems (1)
and (2). Assume also that the number of rectangles is proportional to the multi-
dimension volume of the domain. Let’s divide the domain, e.g. into two equal
subdomains with twice as less volume (Fig. 2), and solve these subproblems in
parallel by using different SCIP processes and exchanging incumbents between
the solvers. One can hope that in this case each solver process will require twice
as less memory. This approach allows to solve the problem in parallel while
reducing the system requirements of individual tasks.

Consider a possible simple decomposition into subdomains with equal vol-
umes. Let’s K6(N−1), take vectors xk, k=2:K+1 (beginning from 2, because x1

is fixed to (0, 0, 1)) and perform decomposition by their first coordinate’s sign.
Formally, for any K-set of parameters {pk=±1, k=1:K} the following inequal-

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

657

Fig. 2. Decomposition reasoning for global optimization.

ity constraints should be added to problems (1) or (2): pk·xk+1,1 6 0, (k = 1:K).
Thus the original problem can be subdivided into 2K subproblems.

We have run several experiments for solving the Tammes problem using the
DDBNB application and the HPC4 cluster at NRC KI. In the experiment with
N=8 and K=7 the problem has been decomposed into 128 tasks that were
completed within 100 minutes. The task execution trace for this experiment is
presented on Fig. 3. Note the large imbalance in the task run times that is due to
the chosen decomposition approach. We plan to address this issue in the future
by using other decomposition methods producing much more subproblems that
may be more balanced. Preliminary experiments were conducted for the Tammes
problem with N=9 and K=8. In this case 256 subproblems were generated and
the computations were successfully completed in about three days.

Fig. 3. Trace of solving the Tammes problem N=8 at HPC4 cluster at NRC KI.

6 Conclusion and Future Work

In this paper we have presented the integration of Everest platform with HPC
resources of supercomputing centers. The described implementation has been
tested by solving hard global optimization problems with the DDBNB Everest

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

658

application. The use of HPC resources with DDBNB has provided the signifi-
cant increment in computing power available for our experiments. A number of
improvements has been made in Everest and its agent in order to support the
efficient use of HPC resources and overcome the limitations found during the
early experiments. The presented approach enables convenient access to HPC
resources, execution of many-task applications, and pooling of multiple resources
for running distributed computations.

Future work will focus on integration with other supercomputing centers and
improving the described implementation. We also plan to conduct the large-scale
experiments involving resources of multiple centers via Everest. Regarding the
DDBNB application, we plan to investigate the use of alternative decomposition
rules producing thousands of subtasks for solving the considered problems.

Acknowledgments

This work is supported by the Russian Science Foundation (project No. 16-
11-10352). This work has been carried out using computing resources of the
federal collective usage center Complex for Simulation and Data Processing for
Mega-science Facilities at NRC ”Kurchatov Institute” (ministry subvention un-
der agreement RFMEFI62117X0016), http://ckp.nrcki.ru/.

References

1. Everest. [online], http://everest.distcomp.org/
2. Parallel combinatorial optimization. Ed. El-Ghazali Talbi, vol. 58. John Wiley &

Sons (2006)
3. Afanasiev, A., Sukhoroslov, O., Voloshinov, V.: MathCloud: Publication and reuse

of scientific applications as restful web services. In: Parallel Computing Technolo-
gies, pp. 394–408. Springer (2013)

4. Afgan, E., Goecks, J., Baker, D., Coraor, N., Nekrutenko, A., Taylor, J.: Galaxy: A
gateway to tools in e-science. In: Guide to e-Science, pp. 145–177. Springer (2011)

5. Allan, R.N.: Virtual research environments: From portals to science gateways. El-
sevier (2009)

6. Chen, Z., Maly, K., Mehrotra, P., Vangala, P.K., Zubair, M.: Web-based framework
for distributed computing. Concurrency - Practice and Experience 9(11), 1175–
1180 (1997)

7. Formiconi, A., Passeri, A., Guelfi, M., Masoni, M., Pupi, A., Meldolesi, U., Malfetti,
P., Calori, L., Guidazzoli, A.: World wide web interface for advanced spect re-
construction algorithms implemented on a remote massively parallel computer.
International journal of medical informatics 47(1-2), 125–138 (1997)

8. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a new computing infrastructure.
Elsevier (2003)

9. Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R.L.,
Hendel, G., Hojny, C., Koch, T., Miltenberger, M., et al.: The SCIP optimization
suite 5.0. Tech. Rep. 17-61, ZIB, Takustr.7, 14195 Berlin (2017)

10. Kacsuk, P.: P-grade portal family for grid infrastructures. Concurrency and Com-
putation: Practice and Experience 23(3), 235–245 (2011)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

659

11. Kostenetskiy, P., Safonov, A.: SUSU supercomputer resources. In: Proceedings of
the 10th Annual International Scientific Conference on Parallel Computing Tech-
nologies (PCT 2016). Arkhangelsk, Russia. vol. 1576, pp. 561–573 (2016)

12. McLennan, M., Kennell, R.: Hubzero: a platform for dissemination and collabora-
tion in computational science and engineering. Computing in Science & Engineer-
ing 12(2), 48–53 (2010)

13. Musin, O.R., Tarasov, A.S.: The Tammes problem for N=14. Experimental Math-
ematics 24(4), 460–468 (2015)

14. Pierce, M.E., Youn, C., Fox, G.C.: The gateway computational web portal. Con-
currency and Computation: Practice and Experience 14(13-15), 1411–1426 (2002)

15. Raicu, I., Zhang, Z., Wilde, M., Foster, I., Beckman, P., Iskra, K., Clifford, B.:
Toward loosely coupled programming on petascale systems. In: Proceedings of the
2008 ACM/IEEE conference on Supercomputing. p. 22. IEEE Press (2008)

16. Smirnov, S., Sukhoroslov, O., Volkov, S.: Integration and combined use of dis-
tributed computing resources with Everest. Procedia Computer Science 101, 359–
368 (2016)

17. Smirnov, S., Voloshinov, V.: Implementation of concurrent parallelization of
branch-and-bound algorithm in Everest distributed environment. Procedia Com-
puter Science 119, 83–89 (2017)

18. Sukhoroslov, O., Volkov, S., Afanasiev, A.: A web-based platform for publication
and distributed execution of computing applications. In: Parallel and Distributed
Computing (ISPDC), 2015 14th International Symposium on. pp. 175–184 (June
2015)

19. Sukhoroslov, O.: Integration of Everest platform with BOINC-based desktop grids
(2017)

20. Thomas, M., Mock, S., Boisseau, J.: Development of web toolkits for computational
science portals: The npaci hotpage. In: High-Performance Distributed Computing,
2000. Proceedings. The Ninth International Symposium on. pp. 308–309. IEEE
(2000)

21. Thomas, M., Burruss, J., Cinquini, L., Fox, G., Gannon, D., Gilbert, L.,
Von Laszewski, G., Jackson, K., Middleton, D., Moore, R., et al.: Grid portal
architectures for scientific applications. In: Journal of Physics: Conference Series.
vol. 16, p. 596. IOP Publishing (2005)

22. Vigerske, S., Gleixner, A.: SCIP: Global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. Optimization Methods and Software pp.
1–31 (2017)

23. Volkov, S., Sukhoroslov, O.: A generic web service for running parameter sweep
experiments in distributed computing environment. Procedia Computer Science
66, 477–486 (2015)

24. Volkov, S., Sukhoroslov, O.: Simplifying the use of clouds for scientific computing
with Everest. Procedia Computer Science 119, 112–120 (2017)

25. Voloshinov, V., Smirnov, S., Sukhoroslov, O.: Implementation and use of coarse-
grained parallel branch-and-bound in Everest distributed environment. Procedia
Computer Science 108, 1532–1541 (2017)

26. Yang, X., Martin, T., Mark, H., Mark, C., Ligang, H., Peter, M.: Survey of major
tools and technologies for grid-enabled portal development. In: Proc. UK e-Science
All Hands Meeting (NeSC 06), University of Cambridge Press (2006)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

660

