
Application of the LLVM Compiler
Infrastructure to the Program Analysis in

SAPFOR

Nikita Kataev[0000−0002−7603−4026]

Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
kaniandr@gmail.com

Abstract. The paper proposes an approach to implementation of pro-
gram analysis in SAPFOR (System FOR Automated Parallelization).
This is a software development suit that is focused on cost reduction
of manual program parallelization. It was primarily designed to perform
source-to-source transformation of a sequential program for execution on
parallel architectures with distributed memory. LLVM (Low Level Vir-
tual Machine) compiler infrastructure is used to examine a program. This
paper focuses on establishing a correspondence between the properties
of the program in the programming language and the properties of its
low-level representation.

Keywords: Program analysis · Program parallelization · Source-to-source
transformation · LLVM

1 Introduction

The main applications of program analysis are program optimization and pro-
gram correctness. Program optimization may require a significant transformation
of the source code of a program. In this case, it is rather difficult to estimate the
quality of the generated code for a particular program in advance. This leads
to the fact that compilers are forced to apply fixed sequence of optimizations to
all programs, which does not always produce the desired results. Compiling for
execution on parallel architectures (multiprocessors, accelerators and distributed
memory systems) drastically complicates the situation. The auto-parallelization
feature of modern compilers may have the opposite effect and lead to a significant
slowdown of the program.

User-guided program transformation that relies on recommendation of some
interactive tools is paramount to simplify the mapping of sequential programs
to parallel architectures. This approach should be considered as one of the key
factors in the development of SAPFOR (System FOR Automated Paralleliza-
tion) [1]. Unfortunately, we did not managed to find a compiler infrastructure
which supports the development of source-to-source transformation passes, pro-
vides detailed information about high-level program items (alias analysis, data
dependency analysis, reduction and induction variables recognition, privatiza-
tion) and allows us to compile large applications in C and Fortran. This paper

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

76

2 N. Kataev

is devoted to the use of the capabilities of the LLVM (Low Level Virtual Ma-
chine) [2] compiler infrastructure for program analysis in SAPFOR. The consid-
ered questions involve the interpretation of information derived from the LLVM
intermediate representation (LLVM IR) and its relation to the items of the higher
level language. In addition, the possibilities of analysis of the transformed LLVM
IR are explored to improve the quality of the source program analysis.

The rest of the paper is organized as follows. Section 2 advocates the necessity
of a new compiler architecture for the SAPFOR and determines the directions
for the future enhancement of the system. Section 3 discusses open-source com-
piler infrastructures that most closely match our goals. Section 4 focuses on
high-level representation of accessed memory locations based on programming
language items. Section 5 presents sequence of LLVMs analysis and transform
passes that SAPFOR’s analysis uses. Section 6 discusses application of analy-
sis techniques implemented in SAPFOR to explore the C version of the NAS
Parallel Benchmarks [3]. Section 7 presents the conclusion and future work.

2 Motivation

SAPFOR (System For Automate Parallelization) [1] is a software development
suit that is focused on cost reduction of manual program parallelization. It is
developed in Keldysh Institute of Applied Mathematics, Russian Academy of Sci-
ences, with the active participation of graduate students and students of Faculty
of Computational Mathematics and Cybernetics of Lomonosov Moscow State
University. SAPFOR can be used to produce a parallel version of a program in
a semi-automatic way according to DVMH [4, 5] model of the parallel program-
ming for heterogeneous computational clusters.

SAPFOR was primarily designed to support Fortran. It was successfully ap-
plied to simplify parallelization of different applications including the NAS Paral-
lel Benchmarks [6], programs designed for solving hydrodynamic and geophysics
problems and applications from the field of laser material processing [1, 7–9].

The system is written in C/C++ and operates with a representation of the
program based on abstract syntax tree used in Sage++ [10]. Sage++ is an
object-oriented compiler preprocessor toolkit aimed to perform source-to-source
program transformation. However, it has not been developed for a long time and
the responsibility for the support of modern programming languages lies on the
developers of SAPFOR. At the moment, Fortran 95 is only supported.

The system implements static and dynamic analysis techniques and relies
on automatic parallelizing compiler. The system is helpful to explore the infor-
mation structure of programs and to perform automatic parallelization of well-
formed sequential programs. This implies that the user must prepare the pro-
gram himself for parallelization, guided by the hints and results of the program
analysis provided to him by SAPFOR. Thus, implicitly parallel programming is
applied to the development of parallel programs.

It is important to note that a significant mutation of the program may be
required. Sometimes a programmer needs to choose a more parallel but not

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

77

Application of LLVM to the program analysis in SAPFOR 3

necessarily completely equivalent algorithm. However, a lot of transformations
are essential to reveal hidden parallelism in a potentially parallel code. The
work [12] shows the program transformation impact on a parallelization of an
application designed for laser material processing [11]. To obtain the implicitly
parallel version of a program written in C99, it took about 35 simple transform
passes such as variable propagation, loop-invariant code motion, loop unrolling,
loop distribution and other. We should clarify that a one-to-one correspondence
can be established between the operators of the source and the transformed
programs and these two programs are completely equivalent.

These results were collected when we explored different approaches to au-
tomate program transformation in SAPFOR. The approach proposed in [12]
involves an automatic execution of individual passes in the order specified by
the user. Another approach considered in [7] supposes an automatic selection of
transform passes depending on the hints identified by the SAPFOR compiler.
These hints describe problems which hinder the parallelization.

The desire to reduce the cost of manual parallelization of large-scale com-
putational applications written in C and Fortran encounters problems described
in [13]. This dictated the necessity of major improvment of SAPFOR in the fol-
lowing directions: (a) incremental parallelization for heterogeneous clusters [14],
(b) automation of program transformations, (c) improving the quality of static
and dynamic analysis of programs, (d) the ability to utilize program profiling and
code coverage information to determine hot-spots, (e) support for C language.

This, in turn, led to investigation of available compiler infrastructures that
have ample opportunities to enable the development of SAPFOR in these areas.

3 Related Works

3.1 Cetus

The Cetus compiler infrastructure [15] is designed for the source-to-source trans-
formation of programs and is being developed at Purdue University since 2004.
The system is written in Java and at the moment Cetus can parse programs
that follow ANSI C89/ISO C90 standard. ANSI/ISO C99 standard is not fully
supported. For example, Cetus parser breaks when it sees a variable declaration
within the for statement header.

Cetus is initially designed to support interprocedural analysis across multiple
files. This gives it an advantage over standard compilers such as GCC, which
compile one source file at a time. Cetus implements the basic types of analy-
sis (data dependence analysis, induction variable recognition and substitution,
reduction variable recognition, privatization, points-to analysis, alias analysis)
which are necessary for program parallelization. In some situations, Cetus makes
too conservative assumptions. For example, the presence of ’goto’ statement in
loops hinders their analysis. A significant drawback is that only the addition
operation is supported for reduction variables.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

78

4 N. Kataev

Cetus does not support standard compiler options, which limits the use of
build automation tools to organize code analysis and compilation. Therefore
investigation of large software is not straightforward.

Cetus does not support Fortran which is one of the SAPFOR target lan-
guages. Further SAPFOR is developed in C/C ++ languages and the use of the
component written in Java will cause additional difficulties in their integration.
The Cetus system is being developed by a small team. Updates do not come out
often. The latest version was released in February 2017.

3.2 ROSE

ROSE [16] compiler infrastructure is developed at Lawrence Livermore National
Laboratory (LLNL). ROSE is an open source project to build source-to-source
program transformation and analysis tools. The main supported languages are
C(89/98), C++(98/11), Fortran (77/95/2003), Java, Python, Haskell. The main
supported platform in Linux. The project implements a large number of analyses.
A software engineering environment is provided for new tools developers.

We have used ROSE to implement a tool for semi-automatic transformation
of programs written in C [12]. The transform request is specified in the form
of directives placed in a source code. The tool checks preconditions and applies
specified transformations.

The experience of using ROSE shows the presence of implementation issues
in some libraries. A large size of the project (several million lines of code) makes
it difficult to correct them by ourselves. At the same time, the authors of the
system give the main preference to the binary analysis subsystem, therefore it
is not known when errors may be corrected.

Testing of the system on the NAS Parallel Benchmarks (NPB) [6, 3] reveals
that ROSE is not capable to process some programs (LU, FT). We attempt to
take input source files, build AST (Abstract Syntax Tree), and then unparse the
AST back to compilable source code. However, unhandled runtime errors occur.

3.3 OPS

OPS (Optimizing Parallelizing System) [17] is a program tool oriented for de-
velopment of (a) parallelizing compilers, parallel language optimizing compilers,
semi-automatic parallelizing systems; (b) electronic circuits computer-aided de-
sign systems; (c) systems of automatic design of hardware based on FPGA.

The main supported language is C, there is a limited support for Fortran.
The main research direction of the OPS developers is the automatic mapping of
sequential programs to systems with FPGA. Another direction is the user-guided
program transformation and the search for new optimizing transformations.

OPS uses Clang [18] to parse programs and build its internal representation.
The higher level of the internal representation distinguishes OPS from GCC and
LLVM. High-level representation is more convenient to create interactive mode
of program optimization into the compiler. Unlike Clang, it allows to perform

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

79

Application of LLVM to the program analysis in SAPFOR 5

transformations directly. The system is compatible with Clang 3.3, more recent
versions are not supported yet.

Data dependence analysis, reduction variable recognition, privatization and
alias analysis are implemented. Reduction variable recognition is only performed
for fairly simple patterns. Calculations of maximum and minimum values are not
allowed for reduction variables. Dependency analysis assumes that each array
subscript must be a combination of surrounding loop indices. Variable substitu-
tion solves this problem, but the resulting program may differ significantly from
the original version. However, the explicit execution of this transformation in
many cases is not required for parallel execution of the program. A large num-
ber of different loop transformations are involved, but a source loop must be
represented in a canonical form.

3.4 LLVM

LLVM is one of the most robust compiler infrastructures available to the research
community. LLVM generates highly-optimized code for a variety of architectures.
Its open-source distribution and continuous updates make it attractive. LLVM
consists of a number of subprojects, many of them are being used in production.
LLVM operates on its own low-level code representation known as the LLVM
intermediate representation (LLVM IR). Unlike GCC, LLVM provides a friendly
API for designing analysis and transform passes. LLVM is currently written
using C++ 11 conforming code. The LLVM libraries are well documented.

One of the most important LLVM features is language-independent type
system that can be used to implement data types and operations from high-level
languages. LLVM IR does not represent high-level language features directly.
Nevertheless, in general it includes enough meta information to utilize analysis
results to evaluate a program in a higher level language.

The release in 2017 of the Fortran language front-end Flang [19] as well as the
opportunity to obtain directly the LLVM IR for Fortran became an additional
motivation for using LLVM to analyze programs in SAPFOR.

4 Representation of Analysis Results

The main interest for us is to describe the memory accesses in the program. It
includes data dependence analysis, induction and reduction variable recognition,
privatization. Moreover it is necessary to determine whether or not two pointers
ever can point to the same object in the memory (alias analysis). All information
provided by SAPFOR must be attached to the items of the source program.
Lower level of LLVM IR does not directly allow LLVM to be applicable for the
description of analysis results.

To achieve this goal, a novel structure is presented. We call it a source-
level alias tree. It depicts the structure of accessed memory using source-level
debug information. Set of memory locations forms a node of the tree. A memory

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

80

6 N. Kataev

location specifies a correspondence between the set of IR-level memory locations
and some item in higher level programming language.

Each memory location is identified by the address of the start of the location
and its size. Note, that sometimes its size can only be known at runtime. LLVM
is a load/store architecture. It means that programs transfer values between reg-
isters and memory solely via load and store operations using typed pointers [2].
So that, there are no implicit accesses to the memory. Hence, an address can be
specified with a sequence of LLVM instructions. At the source-level the distinct
elements of arrays are collapsed into one object, if it can not be expressed as
a base pointer plus a constant offset. However, members of a structure are dis-
tinguished. A special type of memory locations is introduced to summarize the
unknown memory accesses when a function is called.

For example, consider directly accesses to a member S.X of a structure S.
At the source level it will be represented as a single memory location. From the
LLVM point of view the address of the start of the memory location will be
represented as the result of the allocation instruction (for example, ’alloca’) and
as the instruction that calculates the address of a subelement of an aggregate
data structure (for example, ’getelementptr’). Different accesses may produce
different sequences of instructions. In case of P->X, where P points to S new
memory location will be constructed. Regardless the pointer P can refer to dif-
ferent structures at different points in the program, all P->X will be represented
by one memory location.

Two memory locations fall into a single node of a source-level alias tree, if
they may alias. The pairwise alias analysis information provided by LLVM alias
analysis passes is inspected to disambiguate memory references. Each memory
location is established only once in the tree and can only refer to one node. A
node may have a set of child nodes. The partitioning is done in such a way that
the union of all the memory locations from the parent nodes covers the union of
the memory locations from a child.

The ability to adjust its structure across the transformation of LLVM IR is a
distinct advantage of the source-level alias tree. Fig. 1 (a) presents an alias tree
fragment for the LLVM IR directly constructed by Clang for the function shown
in Listing 1.1. Memory locations which are the dereference of different pointers
fall into a common node, and thus may-alias relation is conservatively assumed.
This relation is caused not only by mapping of separate low-level memory lo-
cations to the item of the source program. This confirmed by the investigation
of the information produced by LLVM about alias sets that are active in the
function foo.

Fig. 1 (b) contains the alias tree fragment constructed after memory refer-
ences have been promoted to be register references. Accesses to structure mem-
bers are now performed directly through IR-values associated with pointers A
and B. Despite that source-level alias-tree also provides information about the
items before mutation. The relation between P and IR-values associated with A
and B is established so that it disambiguates different accesses to P in a source
program. This information will be used to refine results of analyses. Transformed

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

81

Application of LLVM to the program analysis in SAPFOR 7

Fig. 1. Fragment of a source-level alias tree before (a) and after (b) transformation of
LLVM IR for a function in Listing 1.1.

locations are stored in the alias tree node of a special kind. Dotted lines indi-
cate that the union of memory locations from a given node is not required to
cover the union of memory locations from descendant nodes. May-alias relation
is assumed instead.

Listing 1.1. Source code for a source-level alias tree in Fig. 1.

struct S { f loat X; f loat Y; } ;
void f oo (struct S ∗ r e s t r i c t A, struct S ∗ r e s t r i c t B) {

struct S ∗P;
P = A;
P−>X = 0 ;
P−>Y = 0 ;
P = B;
P−>X = 0 ;
P−>Y = 0 ;

}

The capability to consider a memory location in conjunction with related
high-level items is another important feature of the source-level alias tree. All
analyses referred to at the beginning of this section are initially performed for
memory locations which are explicitly mentioned in a source code. After that
the obtained results are propagated to surrounded locations. Suppose A->X is
accessed in a loop and is recognized as a private variable. If at the same time A->Y
is recognized as a shared variable then the entire structure should be specified
as a first private. Alias tree reflects relation between structure and its members
and simplifies this investigation.

Another situation arises if several memory locations are explicitly mentioned
in a loop and attached to a single node of the alias tree (or there is a path
between them in the tree). If these locations correspond to different items in the
original program, then a data dependence should be assumed. However, there is
no dependency in another loop if only one of these locations is explicitly accessed.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

82

8 N. Kataev

5 Implementation Details

We have implemented the function passes to construct a source-level alias tree.
The ’-g’ option should be specified when LLVM IR is emitted to generate source
level debug information. LLVM 4.0 is currently supported. The debug intrin-
sics ’llvm.dbg.declarae’ and ’llvm.dbg.value’ are used to determine the relation
between LLVM variables and source language variables. Value handles enable
to track address of IR-level memory locations across RAUW (Replace All Uses
With) operations. Similar handlers have been implemented to track memory
locations across rebuilding of the alias tree after IR transformation.

LLVM implements reduction and induction variable recognition technics which
are based on the scalar evolution pass. Dependence analysis pass is applied to
detect dependences between memory accesses. As noted in the LLVM documen-
tation, it implements the tests described in [20]. Actually these tests satisfy
SAPFOR analysis goals. If necessary, the set of tests may be extended in the fu-
ture. In addition, for scalar privatization a function pass has been written. This
pass implements the approach described in [21]. We extended the mentioned
approach to enable SAPFOR to analyze statements that do pointer accesses.

The static analysis in SAPFOR uses a sequence of passes discussed below.
We divide this sequence into several steps. The first step consists of simple trans-
form passes which simplify the analysis, but they do not require special efforts
to maintain the correspondence between LLVM IR and higher level program
items. These transformations available in LLVM are implemented by the fol-
lowing passes: unreachable code elimination, removal of declarations of unused
functions, elimination of unreachable internal globals, propagation of function
attributes and other passes. The next step builds the source-level alias tree and
performs variable privatization. Subsequent transform passes may destroy some
variables and debugging information. To avoid loss of source-level data depen-
dencies, we perform the preliminary analysis as mentioned above.

After that, the SROA (Scalar Replacement of Aggregates) pass is executed.
It breaks up ’alloca’ instructions of aggregate type (structure or array) into in-
dividual alloca instructions for each member, if possible. Then, if possible, it
transforms the individual ’alloca’ instructions into SSA (Static Single Assign-
ment) form. Debugging information is modified in accordance with the transfor-
mation performed and it allows SAPFOR to determine which variables in the
source code correspond to registers.

At the following step a previously constructed source-level alias tree is up-
dated. Then, induction and reduction variable recognition is performed, privati-
zation pass is re-executed and appropriate information is updated. Promotion of
memory references realized at the previous step simplifies expressions. Hence, ar-
ray subscript becomes a combination of surrounding loop indices in many cases.
So that data dependencies are discovered and classified.

The next step performs loop rotation transformation. Otherwise some reduc-
tions will not be recognized due to the features of the for-loop representation.
Finally, reduction recognition is repeated, and previously obtained information
is updated. Analysis of other types of dependencies is not repeated, since after

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

83

Application of LLVM to the program analysis in SAPFOR 9

the loop rotation, the results of the corresponding analysis may not correspond
to the properties of the original program.

6 Evaluation

The implemented analysis techniques were examined on the C versions of the
NAS Parallel Benchmarks (NPB) [3]. Each benchmark consists of several files
and can be investigated in two modes: (a) file-by-file analysis (b) analysis of pre-
liminary merged files. The last one uses the ability of Clang to merge together
several ASTs in order to subsequently generate a single LLVM IR for all files.
We have increased the applicability of the merge action to maintain large appli-
cations, we have improved the readability of diagnostic messages, and we also
have eliminated some implementation errors.

Analysis of preliminary merged files is preferable to the file-by-file analysis for
several reasons (a) the possibility of interprocedural analysis (b) the possibility
of applying source code transformations affecting the entire project (for example,
inline expansion) (c) more detailed debugging information is available. As men-
tioned above, it is necessary to use debugging information to present analysis
results. However, Clang does not generate metadata in some cases, for example,
external declarations are ignored. The merge action solves this problem.

The time of the analysis of the merged files, as well as the size of each
benchmark in the number of files and lines of code are given in Table 1. The
correctness of the merge action was verified by the compilation and execution
of the emitted LLVM IR. The analyzer of SAPFOR enables us to use build
automation tools, such as Make. Thus the original Makefiles have been easily
updated. We have replaced the compilation command with the AST generation
command and the linker command with the merge and analysis command.

Table 1. The analysis time(s) of the NAS Parallel Benchmarks (NPB))

Benchmark BT CG DC EP FT IS LU MG SP UA

Files 20 7 13 6 12 5 23 6 22 16
Lines 4198 1331 3202 587 1333 977 4210 1640 3550 8015
Time(s) 6.59 0.12 N/A 0.05 N/A 0.03 5.98 0.58 4.21 N/A

In some cases, merging is not possible without modifying the original versions
of the programs, mainly due to the conflicts between similar names with internal
linkage. These benchmarks were not analyzed, and in the time row N/A is set.

Statistics of the analysis results are presented in the Table 2. It includes the
total number of loops, the number of loops containing accesses to arrays, and
function calls. Reduction, induction and privatizable variables are not considered
as loop-carried dependencies in this statistic and they are presented separately.

Loops with data dependencies averaged 49% (Dep.) of the total number of
loops. Among all loops with dependencies, approximately 45% contain function

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

84

10 N. Kataev

Table 2. The analysis statistic for the NAS Parallel Benchmarks (NPB)

Benchmark
Number Of Loops

Total Array Call Indep.
Dep. Priv.

Ind. Red.
Total Call Only Total Indep.

BT 181 171 51 101 80 50 16 109 65 179 0
CG 47 14 6 17 30 6 2 15 1 46 8
EP 9 6 5 3 6 5 2 3 0 9 2
IS 12 11 3 4 8 3 2 3 0 12 0
LU 187 156 40 96 91 39 27 84 39 171 3
MG 81 37 22 12 69 19 14 38 2 77 1
SP 250 243 48 158 92 47 16 145 87 248 0

Total 767 638 175 391 376 169 79 407 194 742 14

calls (Dep./Call), but only in 20% of cases the dependency is caused only by
the presence of a call (Dep./Only). The analysis is hampered by a large number
of global data and inability to determine that parameters of a function do not
alias. In general, from the total number of loops only 10% of loops contain
dependencies caused only by the function calls. This suggests that the limitation
for interprocedural analysis did not have a significant impact on the accuracy of
the results obtained. Sometimes, the presence of dependencies is caused by the
use of indirect array accesses. But in general, a large number of dependencies
is more likely to indicate the need to program transformation for their parallel
execution rather than the limitations for analysis capabilities. This confirms that
the use of advanced analysis techniques is necessary, but it is not sufficient for
program parallelization.

It is important to note that variable privatization is necessary for the paral-
lel execution of about the half of the loops. Moreover, this is also true for loops
without data dependencies. To preserve the semantics of the original program,
privatizable variables should be classified, first and last private variables should
be identified. This advocates the implementation of a separate pass responsible
for such kind of analysis. The built-in LLVM dependency analysis at best recog-
nizes output dependency for the privatizable scalar variables. In fact, it can be
successfully applied only after memory references have been promoted to be reg-
ister references. Therefore, it is not applicable for the references that have been
promoted. Although, for the compiler, this approach is acceptable, but in the
case of source-to-source transformation and parallelization, information should
be available on all variables presented in a source program.

7 Conclusion

This paper is devoted to the use of the capabilities of the LLVM compiler in-
frastructure for program analysis in SAPFOR. Low-level representation is used
to obtain information about the original program. Investigation of transformed
LLVM IR improves the quality of the source program analysis. We present a

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

85

Application of LLVM to the program analysis in SAPFOR 11

structure called the source-level alias tree to restore original program properties
after transformation. It depicts the structure of accessed memory using source-
level debug information.

Source-level alias tree (a) summarizes IR-level memory locations to higher
level items, (b) corresponds to a hierarchical type system of a higher level lan-
guage, (c) does not directly depend on a programming language and front-end,
because it uses metadata, rather than abstract syntax tree, (d) adjust its struc-
ture across the transformation of LLVM IR which does not affect the structure of
the memory used in the original program, (e) provides investigation of a memory
location in conjunction with alias high-level items.

The implemented analysis techniques were examined on the C versions of the
NAS Parallel Benchmarks.

Future works involve the usage of scalar evolution analysis in conjunction
with source-level alias tree to implement array privatization techniques. We also
focused on application of LLVM based analysis to check the correctness of source-
level transformations. In our opinion, source-level transformations are vital to
provide program parallelization in interaction with a programmer. Implementa-
tion of dynamic analysis in order to improve the alias analysis results and the
accurateness of alias tree construction is also one of our future goals.

We plan to use the proposed approach in combination with Flang to analyze
Fortran programs.

Acknowledgement. The reported study was funded by the Program of the
Presidium of RAS 26 ”Fundamental basis for creating algorithms and software
for perspective ultrahigh-performance computing”.

References

1. Klinov, M.S., Krukov, V.A.: Automatic parallelization of fortran programs. Mapping
to cluster (in Russian). Vestnik of Lobachevsky University of Nizhni Novgorod, 2,
pp. 128–134. Nizhni Novgorod State University Press, Nizhni Novgorod (2009)

2. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proc. of the 2004 International Symposium on Code
Generation and Optimization (CGO’04). Palo Alto, California (2004)

3. Seo, S., Jo, G., Lee, J.: Performance Characterization of the NAS Parallel Bench-
marks in OpenCL. In: 2011 IEEE International Symposium on. Workload Charac-
terization (IISWC), pp. 137-148. (2011)

4. Konovalov, N.A., Krukov, V.A, Mikhajlov, S.N., Pogrebtsov, A.A.: Fortan DVM: a
Language for Portable Parallel Program Development. In: Programming and Com-
puter Software. vol. 21, no. 1, pp. 35–38 (1995)

5. Bakhtin, V.A, Klinov, M.S., Krukov, V.A., Podderugina, N.V., Pritula, M.N.,
Sazanov, Yu.L.: Extension of the DVM-model of parallel programming for clusters
with heterogeneous nodes (in Russian). Bulletin of South Ural State University.
Series: Mathematical Modeling, Programming & Computer Software, no. 18 (277),
issue 12, pp. 82–92. Publishing of the South Ural State University, Chelyabinsk
(2012)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

86

12 N. Kataev

6. NAS Parallel Benchmarks, https://www.nas.nasa.gov/publications/npb.html. Last
accessed 14 Apr 2018

7. Kataev, N.A., Bulanov, A.A.: Automated transformation of Fortran programs es-
sential for their efficient parallelization through SAPFOR system (in Russian). In:
Parallel Computational Technologies (PCT’2015): Proceedings of the International
Scientific Conference (Ekaterinburg, Russia, March 30th - April 3rd, 2015), pp. 172-
177. Chelyabinsk, Publishing of the South Ural State University (2015)

8. Kataev, N., Kolganov, A., Titov, P.: Automated parallelization of a simulation
method of elastic wave propagation in media with complex 3d geometry surface
on high-performance heterogeneous clusters. In: Malyshkin V. (eds) Parallel Com-
puting Technologies. PaCT 2017. Lecture Notes in Computer Science, vol 10421,
pp. 32–41. Springer, Cham (2017)

9. Bakhtin, V.A., Kataev, N.A., Klinov, M.S., Krukov, V.A., Podderugina, N.V., Prit-
ula, M.N.: Automatic parallelization of Fortran programs to a cluster with graphic
accelerators (in Russian). In: Parallel Computational Technologies (PCT’2012). Pro-
ceedings of the International Scientific Conference (Novosibirsk, Russia, March 26-
30, 2012), pp. 373–379. Publishing of the South Ural State University, Chelyabinsk
(2012)

10. pC++/Sage++, http://www.extreme.indiana.edu/sage/. Last accessed 14 Apr
2018

11. Niziev, V.G., Koldoba, A.V., Mirzade, F.H., Panchenko, V.Y., Poveschenko, Y.A.,
Popov, M.V. Numerical modeling of melting process of two-component powders in
laser agglomeration (in Russian). Mathematical modeling. Vol. 23, No. 4, pp. 90–102
(2011)

12. Baranov, M.S., Ivanov, D.I., Kataev, N.A., Smirnov, A.A.: Automated paralleliza-
tion of sequential C-programs on the example of two applications from the field of
laser material processing. In: CEUR Workshop Proceedings 1st Russian Conference
on Supercomputing Days 2015, vol. 1482, pp. 536 (2015)

13. Armstrong, B., Eigenmann, R.: Challenges in the automatic paralleliza-
tion of large-scale computational applications. In: Proc. SPIE 4528, Com-
mercial Applications for High-Performance Computing, 50 (July 27, 2001)
https://doi.org/10.1117/12.434876 (2001)

14. Bakhtin, V.A., Zhukova, O.V., Kataev, N.A., Kolganov, A.S., Krukov, V.A., Pod-
derugina, N.V., Pritula, M.N., Savitskaya, O.A., Smirnov, A.A.: Automation of soft-
ware packages parallelization. In: Scientific service on the Internet. Proceedings of
the international scientific conference (September 19th - 24th 2016, Novorossiysk),
pp. 76–85. Keldysh Institute of Applied Mathematics RAS, Moscow (2016)

15. Lee, S. I., Johnson, T. A., Eigenmann, R.: Cetus an extensible compiler infrastruc-
ture for source-to-source transformation. In: International Workshop on Languages
and Compilers for Parallel Computing, pp. 539–553. Springer, Berlin, Heidelberg
(2003)

16. ROSE compiler infrastructure, http://rosecompiler.org/. Last accessed 14 Apr
2018

17. Optimizing parallelizing system, http://ops.rsu.ru/en/about.shtml. Last accessed
14 Apr 2018

18. Clang: a C language family frontend for LLVM, https://clang.llvm.org/. Last ac-
cessed 14 Apr 2018

19. GitHub - flang-compiler/flang, https://github.com/flang-compiler/flang. Last ac-
cessed 14 Apr 2018

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

87

Application of LLVM to the program analysis in SAPFOR 13

20. Goff, Gina and Kennedy, Ken and Tseng, Chau-Wen: Practical Dependence Test-
ing. In: Proceedings of the ACM SIGPLAN 1991 conference on Programming lan-
guage design and implementation (PLDI ’91), pp. 15–29. ACM, New York, NY,
USA (1991)

21. Tu P., Padua, D.: Automatic array privatization. In: Compiler optimizations for
scalable parallel systems, Santosh Pande and Dharma P. Agrawal (eds.), pp. 247–
281. Springer-Verlag New York, Inc., New York, NY, USA (2001)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

88

