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Abstract. This work describes BOINC-based Desktop Grid implemen-
tation of adaptive task scheduling algorithm for virtual drug screening.
The algorithm bases on a game-theoretical mathematical model where
computing nodes act as players. The model allows to adjust the balance
between the results retrieval rate and the search space coverage. We
present the developed scheduling algorithm for BOINC-based Desktop
Grid and evaluate its performance by simulations. Experimental analy-
sis shows that the proposed scheduling algorithm allows to adjust the
results retrieval rate and the search space coverage in a flexible way so
as to reach the maximal efficiency of a BOINC-based Desktop Grid.
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1 Introduction

High-performance computing (HPC) plays a significant role in implementing
contemporary fundamental and applied research, developing new materials, new
medicines, new types of industrial products. To perform HPC, computational
clusters are often used. Should particularly large amounts of resources be re-
quired, one can also deploy Grid systems integrating computational clusters.
Computing resources can be also provided on-demand using commercial cloud-
based services. One more option is the use of Desktop Grids. The term stands
for a distributed high-throughput computing system which uses idle time of non-
dedicated geographically distributed computing nodes connected over low-speed
(as opposed to supercomputer interconnect) regular network. In common case
the nodes are either personal computers of volunteers connected over the Internet
(volunteer computing) or organization desktop computers connected over local
area network (Enterprise Desktop Grid). Desktop Grids can also be integrated
into computational clusters or Grid systems (see [1,2] for examples).

As a Desktop Grid is a high-throughput computing tool, it is aimed at pro-
cessing huge numbers of tasks. Usually, when solving such problems, one does
not aim to find a particular answer, but rather to select among a large number of
prospective solutions candidates for more detailed evaluation by the scientists,
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for instance, in a laboratory. One of such problems is virtual screening where a
HTC tool is used to perform computer modelling of interaction between a target
protein and a prospective ligand; molecules with high predicted energy of inter-
action with the target are studied in detail in laboratories. For such problems, it
is important not only to provide high performance when solving them, but also
to organize computations in such way that would ensure the balance between
the results retrieval rate and the search space coverage.

In this paper, we propose a task scheduling algorithm for adjusting the bal-
ance between the results retrieval rate and the search space coverage when per-
forming computations in a BOINC-based Desktop Grid. The basis of the algo-
rithm is a mathematical model which considers the heterogeneous Desktop Grid
environment and the limited knowledge about the input dataset structure. The
algorithm has been developed for solving the problem of virtual screening, but
it can be also used for solving other computationally intensive search problems,
where one needs to balance between the results retrieval rate and the search space
coverage, probably with limited apriori knowledge about the input dataset.

The rest of the paper has the following structure. In Section 2, we provide
the motivation for this work. In Section 3, we describe the methodology used. In
Section 4, we provide and analyze the results of the computational experiments.
In Section 5, we overview the related work. Finally, in Section 6, we conclude
the paper with result discussion and directions of future work.

2 Motivation

2.1 Desktop Grids

There is a number of approaches to implement a Desktop Grid. There can be
peer-to-peer, hierarchical, and other types of Desktop Grid. The diversity of
high-level architectures of Desktop Grids has been described, for instance, in [3].
In our work, we consider the Desktop Grid which follows the server-client model,
as shown in Fig. 1. The server holds a large number of tasks that are mutually
independent pieces of a computationally heavy problem. When a computing
node (or a client) is idle, it communicates with the server and requests work.
The server replies by sending one or more independent tasks. The node processes
them and reports results back to the server. The results are then processed and
can be, for instance, stored in the database for further usage. Such architecture
has been described in a number of works ([4,5] etc.).

The middleware systems for Desktop Grid operation also vary widely. How-
ever, the open source BOINC platform [4] is nowadays considered as de facto
standard. Since 1990s, BOINC has been a framework for many independent vol-
unteer computing projects. Today, it is the most actively developed Desktop
Grid middleware, which supports the widest range of applications.

BOINC is based on server-client architecture, where the workflow proceeds
as described above. The client part is able to work at an arbitrary number of
computers with various hardware and software characteristics.
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Fig. 1. Desktop Grid

With a variety of scheduling mechanisms implemented in BOINC, there is
still a number of challenges one faces when solving a computationally intensive
problem. Such challenges arise due to the heterogeneity and internal uncertain-
ties present in Desktop Grid systems as well as specific requirements imposed
by the field of research.

2.2 Virtual drug screening

Virtual drug screening [6] (further VS) refers to the creation of new medicines,
a time-consuming process with high costs of research and development. It al-
lows to bring in silico the first stage of drug development process, namely the
identification of a set of chemical compounds called hits with predicted desired
biochemical activity. Hits are identified among a set of ligands, low-molecular
compounds able to form a biochemical complex with a protein molecule respon-
sible for disease progression, called a target. In the course of VS, one performs
computer modeling of the interaction of the candidate ligands with the target
and scores the resulting molecular complexes. The ligands with high scores be-
come hits.

In [7], we overview the problem of structure-based VS over large databases
and illustrate the need for fast and efficient hits retrieval methods.

At the same time, discovery of novel chemotypes (e.g. essentially novel ligands
for the given target) is considered to be one of the major drivers of VS progress
for the next years [8]. The problem of finding novel chemotypes is tightly bound
with the problem of retrieval of the most chemically diverse hits, fully covering
the chemical space [9,10]. In general case, this objective can contradict the fastest
hits retrieval, as the least promising areas of the chemical space must be explored
along with the most promising ones.
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To summarize, VS is a complex and resource-demanding process, and various
challenges arise in its course. Depending on the stage of research process, one or
another objective steps forward. With a possibility to adjust the balance between
the hits retrieval rate and the search space coverage, one can direct the process
of VS so as to achieve its maximal efficiency at the current stage of research.

3 Methodology

Being a computational technique to process large numbers of independent fine-
grained tasks, VS essentially involves a set of computational nodes that may
be seen as independent agents, each of them willing to maximize the reward
they receive for computations. The reward may be expressed, for instance, in
terms of virtual credit for CPU time (as it is implemented in BOINC), the
number of found hits, or any other expression of useful work the node performs.
At the same time, decisions of one node may influence the others in case they
access limited shared resources, or compete for the fastest results retrieval, etc.
Such presentation allows to apply the methods of mathematical game theory for
modeling the computational process of VS.

The mathematical model described in this section has been elaborated in [7].
The model is based on a congestion game, which was first proposed by Rosenthal
in 1973 [11]. Its important property is the existence of a deterministic Nash
equilibrium. The convergence and finite-time convergence of the game iterations
are well studied. Existence of a Nash equilibrium is ensured [12] even in the
considered case of heterogeneous players and resources. In order to reach the
equilibrium situation, we employ the best-response dynamics [12,13].

The idea lying in the basis of a model is as follows. Due to variations in
chemical characteristics, molecules have different chances to show high predicted
binding affinity. One can expect that these chances are higher for molecules close
in topology to a known ligand [14,15]. In contrast, molecules with very large
number of atoms are less likely to become hits [16].

Thus, non-overlapping subsets of molecules in the library could be ranked
beforehand by their estimated prospectivity for VS. Once specified, the estimated
probabilities can be updated in the course of VS according to interim results. At
the same time, results originating from the same subset might be redundant. The
model is designed so as to explore most prospective subsets first while keeping
the desired level of diversity by restricting intensity of subsets exploration.

Consider a computer system with m computational nodes — or players —
C1, . . . , Cm, and a set of computational tasks T . Each node is characterized by
its computational performance opsi, which is the average number of operations
performed in a time unit. The input set T is divided into non-overlapping blocks
T = T1

⋃
. . .

⋃
Tn such that the estimated portion of VS hits in block Tj is pj .

We define priority of the block Tj as

σj =
pj

p1 + . . .+ pn
. (1)
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The blocks with higher priority have to be chosen first for processing. We
assume that all tasks in block Tj have the average computational complexity θj ,
i.e., a number of operations to process one task. Each node selects exactly one
block.

The nodes make their decisions at time steps 0, τ, 2τ, . . .. After a node has
processed its portion of tasks, it sends the results to the server and is ready for
the next portion. Let the utility of node Ci at time step τ express the amount
of useful work performed during this step. This amount depends on the number
of executed tasks from the chosen block, its computational complexity, priority,
and the number of other nodes who have also chosen this block.

The fewer nodes explore block Tj simultaneously, the more valuable their
work is. This condition ensures diversification of the interim set of hits. Let nj
be the number of the players who have chosen block Tj at the considered step,
and δ(nj) be the congestion coefficient for the block, which in the simplest case
takes form

δ(nj) =
1

nj + 1
(2)

The utility of node Ci that chooses block Tj is

Uij = (αi δ(nj) + (1− αi)σj)
opsi
θj

. (3)

Here, αi ∈ [0; 1] is the parameter to control the balance between block con-
gestion level δ(nj) and block prospectivity σj . As it tends to zero, the player
Ci gains maximal profit of getting the most possible number of hits at a step
(“digger”). On the contrary, as αi tends to one, the player gains maximal profit
of selecting the blocks with minimal presence of other players (“explorer”).

In such way, different players can have different preferences expressed by the
value of parameter αi. By fixing the preferences, one can direct the computa-
tional process as a whole. In Section 4, we consider the game where all players
have the same preference α = α1 = . . . = αm, varying from 0 to 1.

Therefore, at each considered time step, we have a singleton congestion game
G = 〈C, T, U〉, where C is the set of players (computational nodes), T is the set
of data blocks of which each node selects exactly one, and U is the set of utility
functions. A strategy profile is a schedule s = (s1, . . . , sm), where the component
si = j means that player Ci selects block Tj .

4 Experimental analysis

In order to perform computational experiments and evaluate the performance of
the developed approach, we divide a molecules database into blocks and simulate
VS. We prove the efficiency and flexibility of the proposed algorithm by showing
the influence of scheduling parameter α on results retrieval rate and search space
coverage.

As in [7,5], we use the database GDB-9 of enumerated organic molecules
consisting of at most nine atoms of C, N, O, S and Cl (not counting hydro-
gen). GDB-9 represents about 320 thousand molecules with variety of chemical
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properties. The chosen database is manageable for performing computational
experiments and can be unambiguously divided into several non-overlapping
blocks. At the same time, the set of molecules is rich enough to demonstrate the
feasibility and practicability of proposed solutions.

For the experiments, we consider three pre-calculated chemical properties of
each molecule: the total number of atoms including hydrogens, polar surface area
(PSA), and partition coefficient logP . Basing on these properties, we divided the
database into 16 non-overlapping task blocks. For the sake of time, we do not
compute the predicted binding energy as it would be done in a real VS setting.
Instead we use the pre-calculated value logP . As 0.99% of molecules in GDB-9
have logP ≥ x = 2.7765, the value x = 2.7765 has been taken as a threshold to
count a molecule as a hit.

We use two of the considered chemical properties, the total number of atoms
and the calculated PSA, for charting the molecules database in two dimensions,
and defining blocks of tasks. The resulting decomposition is provided in Ta-
ble 1. In each cell, the upper number (in bold) stands for the total number of
molecules/tasks in the corresponding block. The lower number stands for the
hits fraction in this block.

Table 1. Decomposition of GDB-9 database into non-overlapping blocks.

PSA

[0.0, 24.6) [24.6, 38.05) [38.05, 52.04) [52.04, 118.35]

[4, 17)
9308

0.00398

18362

0.00408

24723

0.00227

29411

0.00211

[17, 19)
16969

0.00147

20182

0.00357

20423

0.00005

20333

0.00157

[19, 21)
24661

0.01500

20564

0.00146

19189

0.00005

15695

0.00204

N
u
m

b
er

o
f

a
to

m
s

[21, 31]
30871

0.06663

22110

0.01072

15845

0.00038

10732

0

We perform computational experiments, simulating virtual screening in a
heterogeneous Desktop Grid consisting of 64 computing nodes. The simulations
have been implemented within the Center for collective use “High-performance
computing center” of Karelian Research Center. The parameters of the simula-
tions are summarized in Table 2.

In Fig. 2, we show the overall process of VS over GDB-9 database for 4 fixed
values of parameter α. We observe that the difference in results retrieval rate
can be drastic for different values of α, unless the VS process has entered the
“tail” phase where all or nearly all hits have been found.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

886



Adaptive Scheduling for BOINC-based Virtual Screening 7

Table 2. Parameters of the simulations.

Parameter Value Description

n 16 Number of task blocks
m 64 Number of computing nodes
ops 15 (nodes C1–C16)

Performance of a computing node
(number of conditional operations per time unit)

20 (nodes C17–C32)
25 (nodes C33–C48)
30 (nodes C49–C64)

θ 75 (blocks T1–T4)
Complexity of a computational task
(number of conditional operations)

100 (blocks T5–T8)
125 (blocks T9–T12)
150 (blocks T13–T16)

τ 100 Maximal length of a step (number of time units)
x 2.7765 Threshold of logP value for selecting a hit

Further, we investigate the influence of the scheduling parameter α value on
the characteristics of the computational process.

Fig. 3 depicts the results retrieval rate and search space coverage, both av-
eraged over steps 1–5 (a) and 21–25 (b), as α varies from 0.0 to 1.0. We observe
that the search space coverage has a positive correlation with the scheduling
coefficient α, while the results retrieval rate has a negative one.

With α varying from 0.0 to 1.0 with step 0.05, we expectedly observe the
“scissors” of the two observed characteristics. The diagram shows that the case
corresponding to zero influence of block congestion (α = 0.0) is relatively ineffi-
cient both in terms of hits retrieval rate and search space coverage. This is due
to the fact that at every step, all players select the same block which appeared to
be most prospective at a previous step. Note that with α = 0.0, the scheduling
algorithm corresponds to the probabilistic heuristic described in [7].

Fig. 3 also shows that at full search space coverage, the results retrieval rate
may decay with increasing α. Due to this reason, it may be inefficient to set the
scheduling coefficient α close to 1.0. With α = 1.0, all blocks are considered equal,
and the scheduling algorithm corresponds to the uniform heuristic described
in [7].

To summarize, the experiments show that with α changing in range [0.0, 1.0],
it is possible to adjust both scheduling characteristics — the results retrieval
rate and the search space coverage — as desired. Borderline values α = 0.0 and
α = 1.0 are relatively inefficient, which follows from the mathematical model.
As α increases within the borders (0.0, 1.0), the former characteristic decreases
and the latter increases.

5 Related work

In this section we briefly overview the present state of the art of game-theoretical
approaches to scheduling in Desktop Grids and scheduling for VS.
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Fig. 2. Results retrieval progress in the course of the simulated virtual screening
run over GDB-9 database

When developing schedulers for Desktop Grids, game-theoretical methods
seem potentially efficient. One can note the work [17]. Its authors describe a
game-theoretical approach to the balancing of volunteer computing resources
between several projects. Each BOINC client has three parameters: peak per-
formance, resource availability history, and settings of resource sharing between
BOINC projects. Each project has its own strategy consisting of the policy of
sending tasks, the slack (the value that determines the order of deadlines ap-
pointment to the tasks), the intervals between connections to the server, and
the replication strategy. The project’s payoff function is equal to the cluster
equivalence parameter. Based on this model, the authors of the paper find the
equilibrium for high-performance computing projects and high-throughput com-
puting projects.

In work [18], co-authored by the authors of the presented paper, an hierar-
chical game-theoretic model of task scheduling is presented. The model is used
to reduce the total server load by creating optimal-sized task parcels instead of
sending tasks to clients one by one. Each client decides which size of parcels
they will request. The payoff function of the server determines its costs for the
formation of task parcels, the time of waiting for the computations results and
their processing. The payoff function of the client is the cost of computing and
communications. Taking into account the fact that an error in the execution of
a single task leads to an error in the entire task parcel, the presented model
allows to decrease the number of requests to the server due to the increase in
the amount of overhead expenses. The resulting solution can be used in projects
with “short” computational tasks; the solution was tested on a VS setting where
one task corresponded to a single ligand. In practice, the grouping of ligands
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(a) Steps 1–5 (b) Steps 21–25

Fig. 3. Results retrieval rate and search space coverage depending on the schedul-
ing coefficient α (normalized, averaged over 5 steps)

is being used in the course of VS, but the optimal parcel size is determined
heuristically for specific computing systems (see, for example, [19,20]).

Due to the demand of resources, VS essentially involves high-performance
computing tools. A recent review on the latest achievements and current state
of VS lists more than a hundred successful examples of ligand discoveries in sil-
ico [8]. Among them, 25 of 82 papers published in 2008–2015 explicitly state that
VS had been performed using high-performance computing such as computing
clusters, supercomputers and grids.

There are works describing fruitful VS using Desktop Grids, as well. Several
large-scale volunteer computing projects devoted to drug discovery have gathered
and employed significant amounts of “gratis” computational resources due to
high public interest to such projects. The most prominent example of such an
infrastructure is the World Community Grid [21], which employed the power of
over 3.4 million personal computers to support 27 research projects, including
drug searches against AIDS, cancer, malaria and other diseases. To name a few,
the projects allowed to discover candidate treatments for neuroblastoma [22],
tuberculosis [23], leishmaniasis [24] etc.

Thus, high-performance and high-throughput computing tools have proven
to be instrumental for implementing VS.

At the same time, there are efforts to automate new VS runs using different
types of computational resources [25,26] and to optimize the VS process. For
example, the task of fast retrieval of maximally diverse hits is being solved using
genetic algorithms and heuristics [9,27].

In work [28], the authors solve the task of fast retrieval of the most prospec-
tive ligands on early stages of VS. The method they use is dividing the search
space into classes according to molecular properties, and calculating the Bayesian
probability of new ligands falling into one or another class. The search space is
restricted by well-known Lipinski’s rules, which, in general, do not guarantee
coverage of all prospective ligands. However, such charting of the database al-
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lows to prioritize the ligands apriori, and the experiments prove the efficiency of
the approach.

The authors of [20] consider the overall process of VS and investigate its
performance in terms of wall-clock time to obtain the results. They divide the
database into chunks of ligands and evaluate the performance for different chunk
sizes.

The mathematical model described in this paper has been proposed and
elaborated in [7]. It was shown that the model allows to boost VS efficiency
at early stages, probably at the sacrifice of its productivity at later stages. Its
implementation for BOINC platform has been proposed in [5] as a pseudo code.
In the present paper we investigate the ability of the model to adjust the results
retrieval rate and search space coverage at any stage of VS.

6 Conclusions and future work

In this paper, we present an implementation of adaptive scheduling algorithm
for virtual screening using BOINC-based Desktop Grid. It is based on the math-
ematical model of game theory, where task scheduling is considered as a conges-
tion game with computing nodes as players, who choose specific subsets of data
blocks for processing. We introduce a scheduling parameter α which expresses
the balance between results retrieval rate and search space coverage. We conduct
computational experiments and show that by varying α, one is able to set the
desired balance value.

The computational experiments to evaluate the performance of the developed
algorithm were performed in the Enterprise Desktop Grid based on resources of
the Karelian Research Center, Russian Academy of Sciences.

The presented mathematical model and the scheduling algorithm are de-
signed for BOINC-based Desktop Grid. Further study is required to investigate
the impact that the overall search process experiences when individual players
change their scheduling strategies according to their preferred behavior of ei-
ther “digger” or “explorer”. This is relevant for volunteer computing projects.
This will be the subject of future work, as well as assessment of the algorithm
performance and effectiveness in multi-objective domains.

Acknowledgements

This work was supported by the Russian Foundation of Basic Research, projects
18-07-00628 and 18-37-00094.

References

1. Afanasiev, A. P., Bychkov, I. V., Manzyuk, M. O., Posypkin, M. A., Semenov, A.
A. and Zaikin, O. S.: Technology for integrating idle computing cluster resources
into volunteer computing projects. In: 5th International Workshop on Computer
Science and Engineering: Information Processing and Control Engineering, WCSE
2015-IPCE, pp. 109–114 (2015)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

890



Adaptive Scheduling for BOINC-based Virtual Screening 11
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