
www.bsc.es

Why Exascale will not Appear without
Runtime Aware Architectures

Prof. Mateo Valero

Russian Supercomputing Days
Moscow September 2015

2

Design of Superscalar Processors

Decoupled from the software stack

Simple interface
Sequential program

ILP

ISA

Programs
“decoupled”

from hardware

Applications

3

Latency Has Been a Problem from the Beginning... 

Feeding the pipeline with the right instructions:
– HW/SW trace cache (ICS’99)
– Prophet/Critic Hybrid Branch Predictor (ISCA’04)

Locality/reuse
– Cache Memory with Hybrid Mapping (IASTED87). Victim Cache 
– Dual Data Cache (ICS¨95)

A novel renaming mechanism that boosts software prefetching
(ICS’01)

Virtual-Physical Registers (HPCA’98)

Kilo Instruction Processors (ISHPC03,HPCA’06, ISCA’08)

Fe
tc

h

D
ec

od
e

R
en

am
e

In
st

ru
ct

io
n

W
in

do
w

W
ak

eu
p+

se
le

ct

R
eg

is
te

r
fil

e

B
yp

as
s

D
at

a
C

ac
he

R
eg

is
te

r
W

rit
e

C
om

m
it

4

… and the Power Wall Appeared Later   

Better Technologies
Two-level organization (Locality Exploitation)
– Register file for Superscalar (ISCA’00)
– Instruction queues (ICCD’05)
– Load/Store Queues (ISCA’08)

Content-aware register file (ISCA’09)

Direct Wakeup, Pointer-based Instruction Queue Design
(ICCD’04, ICCD’05)

Fuzzy computation (ICS’01, IEEE CAL’02, IEEE-TC’05). Currently known
as Approximate Computing 

Fe
tc

h

D
ec

od
e

R
en

am
e

In
st

ru
ct

io
n

W
in

do
w

W
ak

eu
p+

se
le

ct

R
eg

is
te

r
fil

e

B
yp

as
s

D
at

a
C

ac
he

R
eg

is
te

r
W

rit
e

C
om

m
it

5

Living in the Programming Revolution

Multicores made the interface to leak…

ISA / API

Parallel hardware
with multiple

address spaces
(hierarchy,

transfer), control
flows, …

Applications

Parallel application
logic

+
Platform

specificites

Applications

6

ISA / API

Vision in the Programming Revolution

Need to decouple again

General purpose

Single address space

Application logic

Arch. independentApplications

Power to the runtime

PM: High-level, clean, abstract interface

The efforts are
focused on

efficiently using the
underlying hardware

History / Strategy

SMPSs V2
~2009

GPUSs
~2009

CellSs
~2006

SMPSs V1
~2007

PERMPAR
~1994

GridSs
~2002

COMPSs
~2007

NANOS
~1996

COMPSs
ServiceSs

~2010

COMPSs
ServiceSs
PyCOMPSs

~2013

OmpSs
~2008

OpenMP … 3.0 …. 4.0 ….

StarSs
~2008

DDT @
Parascope
~1992

2008 2013

Forerunner of OpenMP

8

OmpSs: A Sequential Program …

void vadd3 (float A[BS], float B[BS],
float C[BS]);

void scale_add (float sum, float A[BS],
float B[BS]);

void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS) // C=A+B
vadd3 (&A[i], &B[i], &C[i]);

...
for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

9

OmpSs: … Taskified …
#pragma css task input(A, B) output(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma css task input(sum, A) inout(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma css task input(A) inout(sum)
void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS) // C=A+B
vadd3 (&A[i], &B[i], &C[i]);

...
for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

1 2 3 4

13 14 15 16

5 6 87

17

9

18

10

19

11

20

12

Color/number: order of task instantiation
Some antidependences covered by flow dependences not drawn

Write

10

Decouple
how we write
form
how it is executed

… and Executed in a Data-Flow Model
#pragma css task input(A, B) output(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma css task input(sum, A) inout(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma css task input(A) inout(sum)
void accum (float A[BS], float *sum);

1 1 1 2

2 2 2 3

2 3 54

7

6

8

6

7

6

8

7

for (i=0; i<N; i+=BS) // C=A+B
vadd3 (&A[i], &B[i], &C[i]);

...
for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

Write

Execute

Color/number: a possible order of task execution

11

OmpSs Ubiquity
OmpSs @ Cell
– CellSs [SC 2006, IBM JRD 2007]
– Speculative Distributed Scheduling [IPDPS 2011]

OmpSs @ Multicores [PPL 2011]
OmpSs @ Clusters
– Multicores [EuroPAR 2011, IPDPS 2013-1, ICS 2013]
– Multicores+GPU [ICS 2011, IPDPS 2012]

OmpSs @ Multicore+GPU [IPDPS 2013-2]
OmpSs @ Zynq
– Offload computation and Nanos++ runtime acceleration [FPGA 2014]

OmpSs @ multiple GPUs
– High asynchrony and overlap (transfers and kernels)
– Improved schedulers

12

CellSs, StarSs, OmpSs,…. papers
P. Bellens,...“Memory – CellSs: a programming model for the Cell BE architecture.” SC
2006
J. M. Pérez, et al. “CellSs: Making it easier to program the Cell Broadband Engine
processor.” IBM Journal of Research and Development 2007
J. M. Pérez, et al: “A dependency-aware task-based programming environment for
multi-core architectures.” CLUSTER 2008
P. Bellens,...“Exploiting Locality on the Cell/B.E. through Bypassing.” SAMOS 2009
E. Ayguadé et al.:A Proposal to Extend the OpenMP Tasking Model for Heterogeneous
Architectures. IWOMP 2009
P. Bellens, et al. “Just-in-Time Renaming and Lazy Write-Back on the Cell/B.E.” ICPP
Workshops 2009
E. Ayguadé,: “An Extension of the StarSs Programming Model for Platforms with
Multiple GPUs.” Euro-Par 2009
P. Bellens, et al.”CellSs: Scheduling techniques to better exploit memory hierarchy.”
Scientific Programming 2009
A. Duran, et al. “A Proposal to Extend the OpenMP Tasking Model with Dependent
Tasks.” International Journal of Parallel Programming 2009
J.Labarta et al “BSC Vision Towards Exascale.” IJHPCA 2009

13

CellSs, StarSs, OmpSs,…. papers
E. Ayguadé ET AL “Extending OpenMP to Survive the Heterogeneous Multi-Core Era.”
International Journal of Parallel Programming 2010
P. Bellens, …”A Study of Speculative Distributed Scheduling on the Cell/B.E.” IPDPS
2011
J. Labarta, et al. “Hybrid Parallel Programming with MPI/StarSs.” PARCO 2011
J. Bueno, et al. “Programming clusters of GPUs with OMPSs. ICS 2011
A. Duran, et al “Ompss: a Proposal for Programming Heterogeneous Multi-Core
Architectures.” Parallel Processing Letters 2011
J. Dongarra et al, “The International Exascale Software Project roadmap” IJHPCA 2011
V. Krishnan “OmpSs-OpenCL Programming Model for Heterogeneous Systems” LCPC
2012
N. Vujic, “DMA-circular: an enhanced high level programmable DMA controller for
optimized management of on-chip local memories.” Conf. Computing Frontiers 2012
A. Fernández,”Task-Based Programming with OmpSs and Its Application.” Euro-Par
2014

14

ISA / API

The runtime drives the hardware design

Runtime Aware Architectures (RAA)

Applications

Runtime

PM: High-level, clean, abstract interface

Task based PM
annotated by the user

Data dependencies
detected at runtime

Dynamic scheduling

“Reuse” architectural
ideas under

new constraints

15

Current trends in HPC architectures make RAA a need

Trend towards massive multicore chips
Trend towards heterogeneity

Runtime system support is required

Memory Wall
Power Wall

Runtime drives HW design Efficient HW usage

Runtime-Aware
Architectures

SBAC-PAD, Vitoria October 28th, 2011

17

Fujitsu SPARC64 XIfx

32 computing cores (single
threaded) + 2 assistant cores
24MB L2 sector cache
256-bit wide SIMD
20nm, 3.75M transistors
2.2GHz frequency
1.1TFlops peak performance
High BW interconnects
– HMC (240GB/s x 2 in/out)
– Tofu2 (125GB/s x 2 in/out)

Resilience
Wall

Program. Wall

Power Wall

Heterogeneity of tasks and
Hardware
– Critical path exploitation

Accelerators
– Numerical, data bases,

proteomics, big data

Runtime Aware Architectures (RAA)

18

Task-based check-pointing
Algorithmic-based fault tolerance

Memory Wall Efficient data movement
– Overlap communication and computation
– Latency aware interconnection network

Re-design memory hierarchy
– Hybrid (cache + local memory)
– Non-volatile memory, 3D stacking
– Simplified coherence protocols,

non-coherent islands of cores
Exploitation of data locality:
– Reuse, prefetching, in-memory

computation

Hardware acceleration of the
runtime system
– Task dependency graph

management
Load balancing and scheduling
– Asynchrony and critical path

exploitation

19

Programmability
Wall

Resilience Wall

Memory Wall Power Wall

Superscalar vision at Multicore level
Superscalar World

Out-of-Order, Kilo-Instruction
Processor, Distant Parallelism
Branch Predictor, Speculation
Fuzzy Computation
Dual Data Cache, Sack for VLIW
Register Renaming, Virtual Regs
Cache Reuse, Prefetching, Victim C.
In-memory Computation
Accelerators, Different ISA’s, SMT
Critical Path Exploitation
Resilience

Multicore World
Task-based, Data-flow Graph,
Dynamic Parallelism
Tasks Output Prediction,
Speculation
Hybrid Memory Hierarchy, NVM
Late Task Memory Allocation
Data Reuse, Prefetching
In-memory FU’s
Heterogeneity of Tasks and HW
Task-criticality
Resilience
Load Balancing and Scheduling
Interconnection Network
Data Movement

Memory Wall

Runtime Aware Architectures (RAA)

20

Re-design memory hierarchy
– Hybrid (cache + local memory)
– Non-volatile memory, 3D stacking
– Simplified coherence protocols,

non-coherent islands of cores
Exploitation of data locality:
– Reuse, prefetching, in-memory

computation

21

Runtime-Assisted Data Prefetching
Hide off-chip latency via data block prefetching
Leveraging runtime knowledge of task input data
Explicit data transfer without programmer
intervention

– Command to Data Transfer Engine (MDTE)
– Requests to memory to store data into L2

Hardware support for block prefetching

V. Papaefstathiou et al.: Prefetching and cache
management using task lifetimes. ICS 2013.
V. Garcia et al.. OMHI 2014, Euro-Par workshop. (Best
paper award)

C CCl
us
te
r I
nt
er
co
nn

ec
t

L2

C C

C C

C CL1 L1

L3

DRAM DRAM

L1 L1

L1 L1

L1 L1

MDTE

MDTE

22

Transparent Management of Local Memories
Hybrid memory hierarchy
– L1 cache + Local memories (LM)

More difficult to manage, but
– More energy efficient
– Less coherence traffic

LM Management in OpenMP (SC’12,
ISCA’15)
– Strided accesses served by the LM
– Irregular accesses served by the L1 cache
– HW support for coherence and consistency

C C
L1 Cl

us
te
r I
nt
er
co
nn

ec
t

LM
L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

DRAM DRAM

Ll. Alvarez et al. Hardware-Software Coherence Protocol for the Coexistence of Caches and Local Memories. SC 2012.

0,8
0,9

1
1,1
1,2

CG EP FT IS MG SP

Sp
ee

du
p

Cache
Hybrid

L2

L3

Ll. Alvarez et al. Coherence Protocol for Transparent Management of Scratchpad Memories in shared Memory Manycore Architectures. ISCA 2015.

23

Transparent Management of Local Memories

LM Management in OmpSs (PACT’15)
– Task inputs and outputs mapped to the LMs
– Runtime manages DMA transfers

• Locality-aware task scheduling
• Overlap with runtime
• Double buffering between tasks

– No implications on coherence and consistency
• Ensured by programming model semantics

C C
L1 Cl

us
te
r I
nt
er
co
nn

ec
t

LM
L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

DRAM DRAM

0,8

0,9

1

1,1

1,2

Sp
ee

du
p

Cache
Hybrid

L2

L3

8.7% speedup in execution time

14% reduction in power

20% reduction in network-on-chip traffic

Ll. Alvarez et al. Runtime-Guided Management of Scratchpad Memories in Multi-core
Architectures . PACT 2015

24

Intel Knights Landing

Intel’s Knights Landing has a hybrid and configurable memory
hierarchy

25

Memory Models & Technological Characteristics @ KNL

Source: A. Sodani. “Intel Xeon Phi Processor Knights Landing Architectural
Overview”. Keynote at IXPUG workshop organized at ISC 2015.

Flat Models Cache Model Hybrid Model

26

High Bandwidth (HBW) Malloc API

Allows determining the desired “kind” of memory to use
Our approach: Power to the runtime to decide where to
allocate memory for a particular application!

Source: A. Sodani. “Intel Xeon Phi Processor Knights Landing Architectural
Overview”. Keynote at IXPUG workshop organized at ISC 2015.

Power Wall

Heterogeneity of tasks and
Hardware

– Critical path exploitation

Accelerators
– Numerical, data bases,

proteomics, big data
Management of shared resources

Runtime Aware Architectures (RAA)
Re-design memory hierarchy
– Hybrid (cache + local memory)
– Non-volatile memory, 3D stacking
– Simplified coherence protocols,

non-coherent islands of cores
Exploitation of data locality:
– Reuse, prefetching, in-memory

computation

Memory Wall

28

OmpSs in Heterogeneous Systems

Heterogeneous systems
– Big-little processors
– Accelerators
– Hard to program

big

little

big big

big

little little

little

Task-based programming models can adapt to these
scenarios
– Detect tasks in the critical path and run them in fast cores
– Non-critical tasks can run in slower cores
– Assign tasks to the most energy-efficient HW component
– Runtime takes core of balancing the load
– Same performance with less power consumption

29

Discovering Task Criticality in the Runtime
Criticality-Aware Task Scheduler (CATS, ICS 2015)
– Critical tasks are those in the longest path in the task dependence graph

Comparison to default OmpSs scheduler: Breadth First (BF)
Run on Exynos 5422 big.LITTLE

– 4xCortex-A15 @ 2GHz
– 4xCortex-A7 @ 1.4GHz

Results running on 8 cores
CATS allows applications to
scale better and get closer to
ideal speedup
Speedup for double precision
apps is larger

– Difference between big and
LITTLE is larger for double than
for single-precision floating-point
computation

K. Chronaki et al. Criticality-Aware Dynamic Task Scheduling for Heterogeneous Architectures. ICS 2015.

30

Task Criticality Aware Acceleration
Cores computation power can be reconfigured
– Runtime drives cores reconfigurations using DVFS according to task

criticality and available power budget

Reconfigurations lead to 16% and 45% average
improvements in execution time and EDP over static
techniques
Reconfigurations overhead grows
with the number of cores
– Barriers
– Reconfig frequency

Hardware Runtime
Support Unit (RSU)
– The ISA is augmented with

instructions to notify task execution.
– The RSU reconfigures the core speed

31

Hash Join, Sorting, Aggregation, DBMS

Goal: Vector acceleration of data bases
“Real vector” extensions to x86

– Pipeline operands to the functional unit (like Cray
machines, not like SSE/AVX)

– Scatter/gather, masking, vector length register
– Implemented in PTLSim + DRAMSim2

Hash join work published in MICRO 2012
– 1.94x (large data sets) and 4.56x (cache resident

data sets) of speedup for TPC-H
• Memory bandwidth is the bottleneck

Sorting paper published in HPCA 2015
– Compare existing vectorized quicksort, bitonic

mergesort, radix sort on a consistent platform
– Propose novel approach (VSR) for vectorizing

radix sort with 2 new instructions
• Similarity with AVX512-CD instructions

(but cannot use Intel’s instructions because the
algorithm requires strict ordering)

• Small CAM
– 3.4x speedup over next-best vectorised algorithm

with the same hardware configuration due to:
• Transforming strided accesses to unit-stride
• Elminating replicated data structures

Ongoing work on aggregations
– Reduction to a group of values, not a single scalar

value
– Building from VSR work

0
2
4
6
8

10
12
14
16
18
20
22

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

quicksort bitonic radix vsr

sp
ee

du
p

ov
er

 s
ca

la
r b

as
el

in
e

1 lane 2 lanes 4 lanes

32

BSC proposal for the Exaflop

Exaflop @ 20MW
Target: using a 10TF node then
– Need ~100K nodes
– Each node ~200W, including memory & network
– Assume 80%:20% for cores : memory

Using 800Mhz vector units, we need
– 100 cores, 2 v.u./core, 64 lanes/v.u., muladd/lane
– Why 2 v.u.? Assuming a 4wide ARM core driving the v.u., 2 v.u.

seems reasonable
Hence, about 1.6W for a “core+V.U.”
– Including the ARM front end, the v.u., the caches, the interconnect

slice

BSC proposal 2010

33

Runtime Aware Architectures (RAA)
Heterogeneity of tasks and
Hardware

– Critical path exploitation

Accelerators
– Numerical, data bases,

proteomics, big data
Management of shared resources

Re-design memory hierarchy
– Hybrid (cache + local memory)
– Non-volatile memory, 3D stacking
– Simplified coherence protocols,

non-coherent islands of cores
Exploitation of data locality:
– Reuse, prefetching, in-memory

computation

Task-based checkpointing
Algorithmic-based fault tolerance

Memory Wall Power Wall

Resilience Wall

34

Advantages of OmpSs for resilience
– Asynchrony, OoO execution, Input/output annotations

Algorithmic Recovery Routines
– Conjugate Gradient
– Detection

• Memory Page
Retirement

– Correction
• Algorithmic

– Computation/Recovery
overlap plus
checkpointless techniques low overhead

OmpSs Runtime-based Resilience

L. Jaulmes et al, “Exploiting Asynchrony from Exact Forward Recovery for
DUE in Iterative Solvers”. SC’15… Nominated to the Best paper Award

Single Fault Run

35

Programmability Wall

Runtime Aware Architectures (RAA)

Hardware acceleration of the
runtime system
– Task dependency graph

management
Load balancing and scheduling
– Asynchrony and critical path

exploitation

Heterogeneity of tasks and
Hardware

– Critical path exploitation

Accelerators
– Numerical, data bases,

proteomics, big data
Management of shared resources

Re-design memory hierarchy
– Hybrid (cache + local memory)
– Non-volatile memory, 3D stacking
– Simplified coherence protocols,

non-coherent islands of cores
Exploitation of data locality:
– Reuse, prefetching, in-memory

computation

Memory Wall Power Wall

Task-based checkpointing
Algorithmic-based fault tolerance

Resilience Wall

36

TaskSuperscalar (TaskSs) Pipeline

Hardware design for a distributed task
superscalar pipeline frontend (MICRO’10)
– Can be embedded into any manycore fabric
– Drive hundreds of threads
– Work windows of thousands of tasks
– Fine grain task parallelism

TaskSs components:
– Gateway (GW): Allocate resources for task meta-data
– Object Renaming Table (ORT)

• Map memory objects to producer tasks
– Object Versioning Table (OVT)

• Maintain multiple object versions
– Task Reservation Stations (TRS)

• Store and track task in-flght meta-data

Implementing TaskSs @ Xilinx Zynq

GW

TRS

ORT

Ready Queue

OVT

TaskSs pipeline

Scheduler

C C C C
C C C C
C C C C
C C C C

Multicore Fabric
Y. Etsion et al, “Task Superscalar: An Out-of-Order Task Pipeline” MICRO-43, 2010

Heterogeneity of tasks and
Hardware

– Critical path exploitation

Accelerators
– Numerical, data bases,

proteomics, big data

Runtime Aware Architectures (RAA)

37

Hardware acceleration of the
runtime system
– Task depency graph management

Load Balancing and scheduling
– Asynchrony and critical path

exploitation

Re-design memory hierarchy
– Hybrid (cache + local memory)
– Non-volatile memory, 3D stacking
– Simplified coherence protocols,

non-coherent islands of cores
Exploitation of data locality:
– Reuse, prefetching, in-memory

computation

Task-based checkpointing
Algorithmic-based fault tolerance

Memory Wall Power Wall

Program. Wall Resilience
Wall

Efficient data movement
– Overlap communication and computation
– Latency aware interconnection network

38

Overlap Communication and Computation
Hybrid MPI/OmpSs: Linpack example
Extend asynchronous data-flow execution
to outer level

– Taskify MPI communication primitives

Automatic lookahead
Improved performance
Tolerance to network bandwidth
Tolerance to OS noise

P0 P1 P2

V. Marjanovic et al, “Overlapping Communication and Computation by using
a Hybrid MPI/SMPSs Approach” ICS 2010

39

Effects on Bandwidth

flattening
communication pattern

thus

reducing
bandwidth requirements

*simulation on application with
ring communication pattern

V. Subotic et al. “Overlapping communication and computation by
enforcing speculative data-flow”, January 2008, HiPEAC

40

Related Work
Rigel Architecture (ISCA 2009)
– No L1D, non-coherent L2, read-only, private and cluster-shared data
– Global accesses bypass the L2 and go directly to L3

SARC Architecture (IEEE MICRO 2010)
– Throughput-aware architecture
– TLBs used to access remote LMs and migrate data accross LMs

Runnemede Architecture (HPCA 2013)
– Coherence islands (SW managed) + Hierarchy of LMs
– Dataflow execution (codelets)

Carbon (ISCA 2007)
– Hardware scheduling for task-based programs

Holistic run-time parallelism management (ICS 2013)
Runtime-guided coherence protocols (IPDPS 2014)

41

RoMoL … papers
V. Marjanovic et al. “Effective communication and computation overlap
with hybrid MPI/SMPSs.” PPOPP 2010
Y. Etsion et al. “Task Superscalar: An Out-of-Order Task Pipeline.” MICRO
2010
N. Vujic et al. “Automatic Prefetch and Modulo Scheduling Transformations
for the Cell BE Architecture.” IEEE Trans. Parallel Distrib. Syst. 2010
V. Marjanovic et al. “Overlapping communication and computation by using
a hybrid MPI/SMPSs approach.” ICS 2010
T. Hayes, Oscar Palomar, Osman S. Unsal, Adrián Cristal, Mateo Valero:
Vector Extensions for Decision Support DBMS Acceleration. MICRO 2012
L. Alvarez,et al. “Hardware-software coherence protocol for the
coexistence of caches and local memories.” SC 2012
L. Alvarez,et al. “Hardware-Software Coherence Protocol for the
Coexistence of Caches and Local Memories.” IEEE Trans. Comp. 2015

42

RoMoL … papers
T. Hayes, et al “VSR sort: A novel vectorised sorting algorithm &
architecture extensions for future microprocessors.” HPCA 2015
K. Chronaki et al “Criticality-Aware Dynamic Task
Scheduling for Heterogeneous Architectures.” ICS 2015
L. Alvarez et al “Coherence Protocol for Transparent Management of
Scratchpad Memories in Shared Memory Manycore Architectures.”
ISCA 2015
L. Alvarez et al “Run-Time Guided Management of Scratchpad Memories
in Multicore Architectures.” PACT 2015
L. Jaulmes et al “Exploiting Asynchrony from Exact Forward Recoveries for
DUE in Iterative Solvers.” SC 15. Candidate to the best paper award

43

Riding on Moore’s Law (RoMoL, http://www.bsc.es/romol)
– ERC Advanced Grant: 5-year project 2013 – 2018.

Our team:
– CS Department @ BSC
– PI: Project Coordinators:

– Researchers: Staff:

– Students:

Open for collaborations!

RoMoL Team

Thank you!

BSC Team Annual Meeting

MareNostrum 3

45

Are we planning to upgrade?.. Negotiating our next site ;)

www.bsc.es

THANK YOU!

OmpSs: Potential of Data Access Info

Flat global address space seen by
programmer

Flexibility to dynamically traverse
dataflow graph “optimizing”
– Concurrency. Critical path
– Memory access: data transfers

performed by run time

Opportunities for automatic
– Prefetch
– Reuse
– Eliminate antidependences (rename)
– Replication management

• Coherency/consistency handled by
the runtime

• Layout changes

Main Memory

Processor
CPU

On-chip cache

Off-chip BW

CPU

