Dynamic optimization of linear solver parameters in modelling of unsteady filtration processes

Dmitri Bagaev1,2, Igor Konshin1, Kirill Nikitin1

1Institute of Numerical Mathematics of the RAS
2Lomonosov Moscow State University

Russian Supercomputing Days
September 25-26, 2017, Moscow, Russia
Contents

1 Problem formulation

2 Several approaches

3 Special testing

4 Numerical experiments
Linear systems and linear solvers

- Solution of linear systems
- Linear systems are differ
- A lot of linear solvers
- A lot of parameters for each linear solver
- How to choose the linear solver
- How to choose the linear solver parameters
Goal

- Time optimization of $A_k x = b_k$
- INMOST
- BiILU2 linear solver
- τ - threshold parameter
- q - overlap parameter
Properties

\[T_k = \phi(A_k, b_k, p, \varepsilon_k) \equiv \Phi(A_k, b_k, p) \pm \varepsilon_k \equiv \text{Time}(A_k x = b_k) \]

- \(T_k \) may differ even for the same \(A_k, b_k, p \)
- The value of \(\varepsilon_k \) is impossible to predict
- \(T_k \) can be calculated only once
- Optimal value of \(p \) may depend on \(k \)
- \(\min T_k \) may increase during simulation
Several approaches

- Prescribed optimal fixed parameters
- Brute-force search (direct search over all set of parameters)
- Fast simulated re-annealing optimization algorithm
- Alternating parameters probe based tuning (1U)
Fast simulated re-annealing

- Effective random search
- Local terms: “temperature”, “energy”, probability of jump
- Previous values of T_k are not required
- Does not “stop” at the local minima
Alternating parameters probe based tuning (1U)

- Find local minima
- Check nearby area
- Move to global minima
Models

- **Steady**
 - $A_k \equiv A$ and $b_k \equiv b$
 - Research the impact of the parameter p on solution time

- **Model function**
 - Easy to debug and to test
 - Optimal parameter p depends on “time“

- **Unsteady**
 - Black-Oil simulator BOSS
 - Optimal parameter p depends on “time“
 - $min T_k$ depends on simulation step k
INM cluster configuration

- Compute Node Arbyte Alkazar+ R2Q50;
- 16 cores (two 8-core processors Intel Xeon E5-2665@2.40GHz);
- 64 Gb RAM;
- SUSE Linux Enterprise Server 11 SP1 (x86_64).
N14 sample problem

Figure: The porosity and permeability distributions for SPE-10 problem

Black-Oil Simulator for Scholars (BOSS) for SPE-10 problem. The size of the model mesh is $60 \times 220 \times 85$ cells ($1.122 \cdot 10^6$ cells). The porosity varies from $1.3 \cdot 10^{-5}$ to 0.5 (see Fig. left). The permeability varies from 10^{-3} to $3 \cdot 10^4$ (see Fig. right). The model has 5 vertical wells completed throughout formation. The dimension of the linear system N14 is 3,896,013 unknowns.
Figure: Total solution time T in s. for N14 depending on τ and q for $p = 16$

$T = f(q = 3, \tau)$ and $T = f(q, \tau = 0.003)$, respectively.
Figure: Total solution time T in s. for N14 in variables τ and q for $p = 16$
$f(\tau, q) - \text{special function instead of real solution time}$

$$f(\tau, q) = \left(\frac{16}{25} (\lg(\tau/\tau_0))^2 + 1 \right) \left(\frac{1}{25} \left(\frac{17.5(q-q_0)}{7.5 + q - q_0} \right)^2 + 1 \right)$$

$\tau_0 = 0.003, \quad q_0 = 3$

Figure: Two-parameter function $f(\tau, q)$
$$f(\tau, q)$$

Figure: Cross-sections for $q = q_{opt} = 3$ and $\tau = \tau_{opt} = 0.003$

$$T = f(q = 3, \tau)$$ and $$T = f(q, \tau = 0.003),$$ respectively.
\[f(\tau, q, t) - \text{unsteady} \]

\[\tau_0 = 10^{-2} \cos(2\pi t/t_0) \]

\[q_0 = 2 + \cos(2\pi t/t_0) \]

\[t_0 = 100 \]

Here, \(\ln(\tau) \in [-3; -1] \) and \(q \in [1; 3] \).
$f(\tau, q, t) – \text{unsteady}$

Figure: τ_{opt} depending on the time step k for function $f(\tau, q, t)$

Brute-force search vrs. SA algorithm and 1U algorithm, respectively.
Unsteady black-oil simulation – fixed parameters \((\tau, q)\)

Figure: Unsteady black-oil simulation solution times depending on time step \(k\)

Figure: Unsteady black-oil simulation cumulative times depending on time step \(k\)
Figure: Optimizing τ for black-oil simulator
Unsteady black-oil simulation – parameters optimization

Figure: Local and cumulative times depending on time step k
Unsteady black-oil simulation – parameters optimization

Figure: Cumulative times bar chart for default sets of parameters and for proposed algorithms compared with the optimal one
Conclusion

- Two parameters optimization algorithms are proposed
- The solution time is close (≈10%) to the optimal one
- Better than any prescribed set of parameters
 - 2-3-4 times better than regular set
 - 1.5 times better than the best fixed one

- To be applied to:
 - another linear solvers like PETSc AS\((q)\)+ILU\((k)\)
 - another application, i.e. haemodynamics