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DNS of multiscale transient problems: how to get 
accurate solutions with realistic numbers of grid points 

(generally, DOF)? 

(2) Decrease DOF by using high-order methods 

(1) Use efficient parallel codes low-order methods 

(3) Use parallel codes for high-order methods 
 

For required accuracy: 

Present talk:  use very high-order with (3) 

3D unsteady CFD: n times DOF decrease for x,y,z         n^4 decrease in operation count 



General idea of constructing arbitrary-order accurate multioperators 
formulae (Tolstykh, 1997, Parallel CFD, Manchester) 

Some papers: Tolstykh, JCP(2007,2008), Commun.in Comp.Phys.(2017) 
А.И.Толстых  Компактные и мультиоператорные аппроксимации  высокой 

точности для уравнений в частных производных, М. Наука,2015 
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Existence and  example of construction 

 

• The solvability of the linear system and hence existence and uniqueness 
can be proved if basis operators are compact approximations to  target one 

 

• Consider approximate formula 

 

• Introduce operator 

 

    Form superposition 

 

Fix                            , solve for                               , obtain 

 

Parameters                               can be used to control the properties  

 
k

kjkjhj ucuLLu ][][

)(  ʠʣʠ  )(   , 2hOBhOBcBIA hhhh 

   )()( 1

hhh LcAcL 

Mccc ,, 21 M ,, 21 



M

i

ihiMM cLcccL
1

21 )(),,( 

Mccc ,, 21



Multioperators for fluid dynamics. 
Recent version of basis operators with two-point inversions. 

Very high orders, presently up to 36!  (Tolstykh, Commun. In Comp. 
Phys.,2017) 
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Approximate                    by left and right operators 
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Skew-symmetric, approximate derivatives 

Self-adjoint positive, for dissipation 



Phase & Amplitude Errors of 16th & 32nd - order 

schemes with two-diagonal inversions  
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   16th order  Phase errors 



Architecture of multioperarors-based schemes 

 

• Multioperators: specify        . Use preliminary analysis to specify  

                           and                    .     , create  multioperators 

 

•                                                     and 

 

• Conservative scheme (can be put in the form of flux balances) 
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Multidimensional problems: use multioperators for each spatial coordinate 
N-S equations: use any type operators for viscous terms 



Example: smooth solution of the Hopf 
equation 

WENO-5 10th order 16th order 

N error order error order error order 

16 1.3e-2 1.3e-3 1.3e-3 

32 1.2e-3 3.4 6.6e-6 7.7 8.5e-6 7.3 

64 9.5e-5 3.7 5.4e-9 10.3 1.3e-9 12.6 

128 3.3e-6 4.8 4.9e-12 10.1 3.7e-14 15.1 

256 8.7e-8 5.3 8.1e-14 5.9 

10th (M=4) & 16th(M=8) order schemes with two-diagonal 
inversions, C-norm of the solutions errors 
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Benchmark problem (C. Таm), 
  32nd- order scheme with near-optimal values of       

parameters  
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Execution times per time step in 3D case (jets)  
mesh 360x100x100 

Lomonosov sup.comp. 
 

Number 
of proc. 

8 27 64 125 216 360 1000 

Distrib. 
Along 
axes 

2x2x2 3x3x3 4x4x4 5x5x5 6x6x6 6x10x6 10x10x10 

Time per 
time 
step,sec. 

113 27.45 6.34 3.99 2.81 2.81 1.70 

Accelerati
on 

1 4.12 8.94 17.8 28.3 40.3 66.5 



Target problems 

• (I). Steady state problems (smooth meshes are required) 

We are interested in: 

• (II) Unsteady problems requiring long-time integrations with preserving 
high resolution of small scales 

 

• Aeroacoustics  DNS (instability with sound radiation) 

• DNS of turbulence, laminar-turbulent transition 

• 3D unstable vortex wakes generated by landing large aircrafts 

• Atmospheric phenomena (e.g., tornado) 

• Many others 

Using high-order multioperators –based schemes, it is possible 
to catch fine details of flows using the Navier-Stokes equations 
with modest meshes 

 



Direct simulation of unstable subsonic hot 
axisymmetric jets: getting fine details 

•Unsteady Navier-Stokes equations 

•10th-16th  order multioperators schemes 

   detect 

Fine details of   vortex rings formation,  their 
interactions  and break down, 

describe 

 Sound radiation and its origin 



Cold jet. Axisymmetric formulation. M=0.5 

3d view of the vorticity field (fragment) 



3D hot jet ,   M=0.1 Abs. values of vorticity, 4<x<30.  

Azimuthally modes  
spoil vortex rings 



Spectra examples 

10   ,20  Rd
40   ,20  Rd



Instability of Rankine vortex in compressible gas 
with sound radiation 

•Vorticity : 
 
 
 

• Incompressible case: the velocity field is   exact solution  
which is stable in respect to small perturbations 

•Compressible case:  the velocity field is   exact solution 
but it is  unstable 
 

•The problem: numerical simulation of the instability 
scenario using the Euler equations 
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Time history of pressure pulsations at R=20, M=0.3 

Quadrupole sound radiation 

Phase I 
Multipole 
modes 

Phase II 



 Snapshots of acoustic pressure fields near the vortex  
boundary.  Phase I. 

T=700 T=1380 T=2500 

Phase II 



Using Immersed Boundaries Method. Test: flow about cylinder, 
small Re,  M=0.2 

 
U(x,y) 

U(x,0) 

Dashed: 88x80, markers: 352x320 

Tested options: u=v=0 in cyl., 
forcing outside and inside cyl. 
 
No visible influence on near and 
far fields 

Separation angle 

Re=20 

Length of separ. zone 



IBM. Test: flow about cylinder, Re>40,  M=0.2 

810Re  810Re 

810Re 

Vorticity, Re=400 
810Re 

Spectra at x=-4.9, y=15.2 

Re=100 

Vorticity, 

Re=400 

Strouhal numbers 



Calculations for supersonic flows (M<1.5) are possible 
due to conservative property of multioperators-based 

schemes 

•The schemes can deal with shock-capturing 
calculations . Example: underexpanded supersonic jets. 
Screech effect (upwind propagations of acoustic waves}. 

Sponge zones 



Underexpanded jet, M=1.5. Screech effect. 
Schlieren visualization  (abs of density gradients) of  the flow 

field 



Flows with strong shocks and contacts. Hybrid 

multioperators schemes. 

•Main idea: to get monotone solutions near shocks 
and contacts regions and high-order ones away from 
those regions. 

•              Tools:  

 -- Using flux corrections  (Zalesac, J.Comp.Phys,1979) and/or 

-- Blending high-order and monotone schemes 

 (I.B.Petrov, A.S.Kholodov, Comput. Math. Math. Phys.,1984; 

 M. N. Mikhailovskaya , B. V. Rogov, Comput. Math. Math. Phys., 2012) 

 



High Mach numbers, 16th-order hybrid 

Riemann problems 

Double Mach reflection, M=10 

Shock Contact 

Toro problem, 
  M=198 

Noh problem,  
flow collision, 
M~1000 



Conclusions 

•Using the multioperators approach,  it is possible to create 
desired-order approximations for numerical analysis formulae 

•10  th –32th - order multioperators-based optimized schemes 
for fluid dynamics were constructed 

•Extremely high accuracy and high resolution was 
demonstrated using benchmark problems 

•The potential for efficient massively parallel calculations does 
exist 

•High fidelity direct NS and Euler calculations of sound 
generation due to flow instabilities were carried out 

•The schemes can deal with shock-capturing calculations 
•Hybrid schemes can be used in the case of strong shocks and 

hypersonic flows 
 
 



Thank you 


