GPU-based algorithm for numerical simulation of CO₂ sorption

Vadim Lisitsa, Tatyana Khachkova, Yaroslav Bazaikin, Vladimir Derevschikov Institute of Mathematics SB RAS

Introduction

CO2 chemosorption is widely used in

- 1. inhalation anesthesia
- 2. Respiratory care
- 3. hyperbaric chambers
- 4. underwater diving gear
- 5. fire safety apparatuses
- 6. mine rescue equipment.

Introduction

$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + H_2O$

Introduction

Sorption efficiency depends on a number of physical parameters:

- 1. Pellets packing
- 2. Pellets shape
- 3. Internal porosity
- 4. Pore space structure
- 5. CO2 concentration at inlet
- 6. Flow regime

7.

Assumptions:

- 1. We deal with double-porosity model with large interparticle pores and small-scale pores inside the particles
- 2. Only large-scale pores support the fluid flow
- 3. The only transport regime in the small-scale pores is the diffusion
- 4. The considered reaction is the first-order reaction

Mathematical model

Fluid flow

Reactive transport

 $\nabla p - \mu \Delta u = 0$ $\nabla \cdot u = 0$ $x \in \Omega_F$

 $\frac{\partial \phi C_j}{\partial t} + \nabla \cdot \left(u C_j \right) - \nabla \cdot \left(D_j \nabla C_j \right) = F_j(C)$ $x \in \Omega_F \cup \Omega_G$

Mathematical model

Reactive transport

$$\frac{\partial \phi C_{CO_2}}{\partial t} + \nabla \cdot \left(u C_{CO_2} \right) - \nabla \cdot \left(D_{CO_2} \nabla C_{CO_2} \right) = -k \phi C_{CO_2} C_{Ca(OH)_2}$$

$$\frac{\partial \phi C_{H_2O}}{\partial t} + \nabla \cdot \left(u C_{H_2O} \right) - \nabla \cdot \left(D_{H_2O} \nabla C_{H_2O} \right) = k \phi C_{CO_2} C_{Ca(OH)_2},$$

$$\frac{\partial C_{Ca(OH)_2}}{\partial t} = -k \phi C_{CO_2} C_{Ca(OH)_2},$$

$$\frac{\partial C_{CaCO_3}}{\partial t} = k \phi C_{CO_2} C_{Ca(OH)_2},$$

1. Level-set to represent the model geometry

 $\Gamma(\vec{x}) = \left\{ \vec{x} \mid \varphi(\vec{x}, t) = 0 \right\},\$ $\left\|\nabla_{x}\varphi(\vec{x},t)\right\| = 1$

- 1. Level-set to represent the model geometry
- 2. Immersed boundaries to account for irregular geometry

- 1. Level-set to represent the model geometry
- 2. Immersed boundaries to account for irregular geometry
- 3. Projection-type method to solve Stokes equation with finitedifference approximation

- 1. Level-set to represent the model geometry
- 2. Immersed boundaries to account for irregular geometry
- 3. Projection-type method to solve Stokes equation with finitedifference approximation
- 4. AD+R splitting scheme to solve advection-diffusion reaction equation.
- 5. Explicit scheme for AD equation
- 6. Semi-implicit for R equation

$$\phi \frac{C_{j}^{n+1/2} - C_{j}^{n}}{\tau} + \nabla_{h} \cdot \left(uC_{j}^{n}\right) - \nabla_{h} \cdot \left(D_{j}\nabla_{h}C_{j}^{n}\right) = 0$$

$$\frac{C_{j}^{n+1} - C_{j}^{n+1/2}}{\tau} = F_{j}(C^{n+1}, C^{n+1/2})$$

- Level-set to represent the model geometry
 Immersed boundaries to account for irregular geometry
 - 3. Projection-type method to solve Stokes equation with finitedifference approximation
 - 4. AD+R splitting scheme to solve advection-diffusion reaction equation.
 - 5. Explicit scheme for AD equation
 - 6. Semi-implicit for R equation

$$\begin{aligned} \frac{C_{CO_2}^{n+1} - C_{CO_2}^{n+1/2}}{\tau} &= -kC_{CO_2}^{n+1}C_{Ca(OH)_2}^{n+1/2}, \\ \frac{C_{Ca(OH)_2}^{n+1} - C_{Ca(OH)_2}^{n+1/2}}{\tau} &= -\phi kC_{CO_2}^{n+1/2}C_{Ca(OH)_2}^{n+1}, \\ \frac{C_{CaCO_3}^{n+1} - C_{CaCO_3}^{n+1/2}}{\tau} &= -\phi kC_{CO_2}^{n+1}C_{Ca(OH)_2}^{n+1}. \end{aligned}$$

Experiments

Experiments

CO_2 concentration 5%				
	t = 0	t = 15	t = 30	t = 60
$\mu_{Ca(OH)_2}$	0.76	0.32	0.19	0.13
μ_{CaCO_3}	0.05	0.5	0.72	0.78
CO_2 concentration 1%				
	t = 0	t = 15	t = 30	t = 60
$\mu_{Ca(OH)_2}$	0.6948	0.4604	0.3535	0.2672
μ_{CaCO_3}	0.0522	0.2318	0.3818	8 0.475

$$\frac{\partial \phi C_{CO_2}}{\partial t} + \nabla \cdot \left(u C_{CO_2} \right) - \nabla \cdot \left(D_{CO_2} \nabla C_{CO_2} \right) = -k \phi C_{CO_2} C_{Ca(OH)_2},$$

$$\frac{\partial C_{Ca(OH)_2}}{\partial t} = -\frac{k\phi C_{CO_2}C_{Ca(OH)_2}}{\partial t},$$

$$\frac{\partial C_{CaCO_3}}{\partial t} = \frac{k\phi C_{CO_2}C_{Ca(OH)_2}}{c_{Ca(OH)_2}}.$$

We do not know two parameters:

- 1. Reaction rate
- 2. Formation factor of the microporous space

$$D_{CO_2} = \frac{D_{CO_2}^0}{F}$$

Time (s)

CO2 break-through

30 cm

Particle size 3 mm Number of particles 50, 100, 200, 400, 800, 1600 Grid step 0.3 mm

CO2 break-through

30 cm

Particle size 3 mm Number of particles 50, 100, 200, 400, 800, 1600 Grid step 0.3 mm

CO2 break-through

30 cm

Particle size 3 mm Number of particles 50, 100, 200, 400, 800, 1600 Grid step 0.3 mm

Conclusions

- 1. We presented an algorithm for numerical simulation of CO2 chemosorption.
- 2. The algorithm is implemented using CUDA technology and allows simulating real-size gas reactors using a single GPU.
- 3. We calibrate the unknown model parameters reaction rate and the microporous space tortuosity to match the lab experiments.
- 4. We illustrate that the high density of sorbent particles packing increases the break-though time until the CO2 diffusion rate starts limiting the reaction.

Thank you for attention!