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Atmosphere and ocean boundary layers

• Atmospheric boundary layer, HABL ~ 102 – 103 m

• Oceanic boundary layer, HOBL ~ 101 – 102 m

• Benthic boundary layer, HBBL ~ 100 – 101 m

• Free atmosphere and ocean interior connect through 
the OBL and ABL

• Turbulence, stratification, solar radiation, complex 
topography, clouds, surface waves, wave-turbulence 
interaction, Langmuir circulation etc.

• Turbulence with very high Reynolds numbers
• ABL: Re ~ 109, OBL: Re ~ 106 – 107, BBL: Re ~ 105 – 106

• Parameterizations for NWP and climate models
• INMCM, Institute of Numerical Mathematics climate model

• SL-AV, Vorticity-divergence semi-Lagrangian global 
atmospheric model – NWP model used at Russian 
meteorological center

[Chassignet and Verron, 1998]



Numerical simulation of turbulent flows

• DNS – Direct numerical simulation – all scales explicitly 
resolved

• LES – Large eddy simulation – inertial range at least 
partially resolved on computational grid

• RANS – Reynolds averaged Navier-Stokes – fully 
modelled turbulence

[Hilares, 2012]

Reynolds number Viscous length scale 
(size of the smallest eddies)

[Sainte-Rose, 2010]



Unified DNS/LES/RANS numerical model

• Unified DNS-, LES-, RANS- code developed at RCC MSU & INM RAS

• DNS
• Navier-Stokes equations for viscous incompressible fluid

• Boussinesq approximation for stratified flows

• LES
• Filtered Navier-Stokes eq.

• Smagorinsky model, SSM, AMD …

• Dynamic procedure

• RANS
• Non-hydrostatic urban environment model

• Hydrostatic lake model + biochemistry model (with IAP RAS)

• Two-equation turbulence models

• Multiphase flow simulations (CLSVOF)

• Lagrangian particles

– closure needed

Rybinsk Reservoir, surface 
temperature, may-june



Direct numerical simulation

• Numerical solution of Navier-Stokes equations – no turbulence model!

[Hilares, 2012]

– Reynolds number

– Prandtl number

[Sainte-Rose, 2010]

– viscous length scale (size 
of the smallest eddies)

High grid resolution 
is necessary 

Couette flow neutral stratification

[Mortikov et al., 2019]



Why DNS?

• Numerical solution of Navier-Stokes equations – no turbulence model!
Drag coefficient vs Re for flow over circular cylinder

Streamwise velocity RMS channel flow: DNS & 
experiments (Alfredsson et al., 2011)

• Physics of fluids & turbulence research

• Development and verification of subgrid
parameterizations for LES/RANS models

• DNS of turbulent Couette flow Re=120 000: 108 grid 
cells, 1000 CPU cores, 72 hours of computations
• Re=500 000 when using all CPU cores of “Lomonosov-2” 

for a week

• Re=1 000 000 when using all CPU cores of “Tianhe-2” for a 
week

• Can we increase Re when using coprocessors, e.g. 
GPUs/Intel Xeon Phi?

• How large Re is large enough?
• Maximum Re values obtained in DNS comparable with 

OBL, but still lower by a couple of orders of magnitude 
compared with ABL turbulence



Numerical model

• Finite-difference 2nd and 4th order schemes on rectangular staggered grids
• Conservation of momentum and energy [Morinishi et al., 1998; Vasilyev, 2000]

• Finer grid resolution in near-wall regions

• Fractional step method

• Using explicit approximation for nonlinear terms – Adams-Bashforth methods

• Multigrid method for solution of system of linear equations ~ O(N) complexity

• FD & immersed boundary methods for handling complex (& moving) geometry

staggered grid alignment



Direct numerical simulation

• Numerical solution of Navier-Stokes equations

• Passive tracers transport

• Dirichlet boundary conditions or prescribed flux

• Dynamics CPU time ~ 10 species transport [Mortikov & Debolskiy, 2021]

Buoyancy (stratified turbulence) 
and Coriolis terms

Drag force:

Rayleigh friction &
Forchheimer drag – model surface 
roughness elements, e.g. canopy

– different drag definitions, see 
[Bhattacharjee et al., 2022]

External scalar gradient Decay with fixed life-time



Direct numerical simulation

• Lagrangian particle transport

• Trilinear interpolation 

• Handling multiple sources/sinks & particle groups

• Particle decay with fixed life-time

• Elastic collisions with walls

• Calculate particles trajectories 

• Two-way disperse phase/fluid coupling

• Coupling with external particle library [Varentsov, 2022]

buoyancy force:

passive particles:

drag force:



DNS as a research tool

• Large data-sets, single snapshot of velocity & pressure: O(1)-O(10) GB

• On the fly flow analysis
• Different modes of data output: 3D, 2D, 1D, point-like measurements & integral flow characteristics

• Statistics calculation: first-order moments & up to budget eqs. for second-order moments

• Spectrum analysis: 1D & 2D spectra, spectral energy density time series

• Single variable probability density functions & joint p.d.f. 

• Flow manipulation at run-time, e.g. filtration

Large-scale structures (rolls) 
in neutral Couette flow



Parallel implementation

• C/C++ code

• MPI domain decomposition

• Using OpenMP on multicore processors
• Overlap MPI communications with computations

• Cache-aware algorithms/thread synchronization become more important

• Each MPI process works with particles only inside the grid block it 
holds – particles move from one MPI process to another

Lomonosov-2  supercomputer, 
©MSU, T-platforms

MVS-10P, -10Q 
supercomputers, 
©RAS, RSC Group

Intel Xeon CPU
Nvidia GPU

Intel Xeon CPU
Intel Xeon Phi

MPI process with single or 
multiple OpenMP threads

[Akhmed-Zaki et al., 2016]



Parallel implementation

• MPI-OpenMP CPU scaling

• Code ported on Intel Xeon Phi architecture

• Running on ARM-based CPUs (Kunpeng 920 processors)

Scaling up to 25000 cores on CSC 
Mahti supercomputer (AMD EPYC)

Intranode scaling MAHTI CSC  

[Mortikov and Debolskiy, 2021]

Argonne Theta Supercomputer 
(4096 Intel Xeon Phi cards)



Why GPUs?

• Graphics Processing Units (GPUs) – energy 
efficiency, cheap ($/FLOPs) & high performance 
for some problems

• Increase in performance of supercomputers in 
the last 10 years in large part due to the 
advent of coprocessors: GPUs (Lomonosov-2, 
Summit) or Intel Xeon Phi (Tianhe-2)

• Speed-up of hydrodynamic models when 
ported to GPUs:
• x20-x40 compared with CPU core

• x2-x4 compared with CPU node

• Speed-up of molecular dynamics when ported 
to GPUs:
• x500-x1000 compared with CPU core

• Adapt models & algorithms to new Frontiers: 
exascale and post-exascale systems



Why GPUs?



DNS on CPU/GPU systems

• DNS model fully ported on hybrid CPU/GPU systems
• Includes dynamics, Lagrangian particles transport & run-time flow processing support on GPUs

• Using C/C++ & MPI/OpenMP/CUDA [only Nvidia GPUs]

• Just compile & run – single executable:

./exe -arch cpu

./exe -arch gpu

MPI process on CPU/GPU

all MPI processes on CPU

all MPI processes on GPU

./exe -arch mix MPI processes both on CPU/GPU

• Same setup using configuration files when running 
in CPU/GPU or mixed modes

• Almost no differences in high-level code, e.g. in 
implementation of time integration of NS eqs.

• Still – need support for two (CPU & GPU) low-level 
versions of the code, e.g. stencil operators

• MATLAB & Python suites for data post-processing 
and visualization [Akhmed-Zaki et al., 2016]



DNS on CPU/GPU systems

• Tracer/particle transport good speed-up (x10/x50) on 
GPUs compared with single CPU node

• MPI data communications involve CPU-GPU 
memory transfers – a scaling bottleneck

• Dynamics considerably slower – multigrid 
method results in non-efficient GPU usage

• Need large grids to gain good performance 
improvement on GPUs

• Mix CPU/GPU mode – needs load balancing, BUT – allows 
ensemble simulations using both node CPU & GPU

CPU
core, sec

CPU
node/MPI, sec

CPU
node/OpenMP (sec)

GPU
Kepler (sec)

GPU 
Pascal (sec)

GPU 
Volta (sec)

164.1 28.6 27.3 35.9 13.1 8.4

648.2 108.4 110.2 83.16 28.1 13.7

- 548.8 - 141.4 67.25

GPU vs CPU speedup for scalar 
transport on sphere 

DNS: starting from 400 000 grid 
nodes (and x8 in next rows)
CPU: Intel Xeon E5-2697 v3 
2.60GHz



DNS with offload on GPU

• Offload parts of computations on GPU
• MPI process runs the code on CPU except the offloaded modules on GPU 

• Tracers & particles transport are good candidates for offloading – more efficient (in terms of 
both performance and scaling) on GPUs compared with dynamics module

Lagrangian particles transport:

Passive tracers transport:

Dynamics & data processing:

CPU & GPU memory transfer each 
time step – may be overlapped 

with computations



Conclusions

• DNS/LES/RANS models and codes have to take into 
account modern-day HPC zoo
• Enable a lot of data processing at run-time

• Optimizations tuned for specific architectures
• ARM/Intel/AMD CPUs require different code optimizations

• Using CUDA shared-memory gives benefits not on all GPU 
architectures in use & more

• Unified codes – much less code to code

• Adapting to novel GPU architectures
• Tensor cores, half precision …

• Running on both Nvidia & AMD GPUs

• ML-based algorithms

• Using half precision – expecting x2 improvement in 
memory transfer & computations
• Is the precision enough for at least some of the model blocks?

• Enabling mixed precision algorithms Code available per request at RCC GitLab: 
http://tesla.parallel.ru/

http://tesla.parallel.ru/
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http://tesla.parallel.ru/

