
Numerical simulation of atmosphere and ocean
boundary layer turbulence on

heterogeneous supercomputers
Mortikov E.V.1,2, Debolskiy A.V.1,3, Gashchuk E.M.4,2, Glazunov A.V.2

1Research Computing Center, Lomonosov Moscow State University

2Marchuk Institute of Numerical Mathematics, Russian Academy of Science

3A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Science

4Department of Mechanics and Mathematics, Lomonosov Moscow State University

Russian Supercomputing Days 2022

Atmosphere and ocean boundary layers

• Atmospheric boundary layer, HABL ~ 102 – 103 m

• Oceanic boundary layer, HOBL ~ 101 – 102 m

• Benthic boundary layer, HBBL ~ 100 – 101 m

• Free atmosphere and ocean interior connect through
the OBL and ABL

• Turbulence, stratification, solar radiation, complex
topography, clouds, surface waves, wave-turbulence
interaction, Langmuir circulation etc.

• Turbulence with very high Reynolds numbers
• ABL: Re ~ 109, OBL: Re ~ 106 – 107, BBL: Re ~ 105 – 106

• Parameterizations for NWP and climate models
• INMCM, Institute of Numerical Mathematics climate model

• SL-AV, Vorticity-divergence semi-Lagrangian global
atmospheric model – NWP model used at Russian
meteorological center

[Chassignet and Verron, 1998]

Numerical simulation of turbulent flows

• DNS – Direct numerical simulation – all scales explicitly
resolved

• LES – Large eddy simulation – inertial range at least
partially resolved on computational grid

• RANS – Reynolds averaged Navier-Stokes – fully
modelled turbulence

[Hilares, 2012]

Reynolds number Viscous length scale
(size of the smallest eddies)

[Sainte-Rose, 2010]

Unified DNS/LES/RANS numerical model

• Unified DNS-, LES-, RANS- code developed at RCC MSU & INM RAS

• DNS
• Navier-Stokes equations for viscous incompressible fluid

• Boussinesq approximation for stratified flows

• LES
• Filtered Navier-Stokes eq.

• Smagorinsky model, SSM, AMD …

• Dynamic procedure

• RANS
• Non-hydrostatic urban environment model

• Hydrostatic lake model + biochemistry model (with IAP RAS)

• Two-equation turbulence models

• Multiphase flow simulations (CLSVOF)

• Lagrangian particles

– closure needed

Rybinsk Reservoir, surface
temperature, may-june

Direct numerical simulation

• Numerical solution of Navier-Stokes equations – no turbulence model!

[Hilares, 2012]

– Reynolds number

– Prandtl number

[Sainte-Rose, 2010]

– viscous length scale (size
of the smallest eddies)

High grid resolution
is necessary

Couette flow neutral stratification

[Mortikov et al., 2019]

Why DNS?

• Numerical solution of Navier-Stokes equations – no turbulence model!
Drag coefficient vs Re for flow over circular cylinder

Streamwise velocity RMS channel flow: DNS &
experiments (Alfredsson et al., 2011)

• Physics of fluids & turbulence research

• Development and verification of subgrid
parameterizations for LES/RANS models

• DNS of turbulent Couette flow Re=120 000: 108 grid
cells, 1000 CPU cores, 72 hours of computations
• Re=500 000 when using all CPU cores of “Lomonosov-2”

for a week

• Re=1 000 000 when using all CPU cores of “Tianhe-2” for a
week

• Can we increase Re when using coprocessors, e.g.
GPUs/Intel Xeon Phi?

• How large Re is large enough?
• Maximum Re values obtained in DNS comparable with

OBL, but still lower by a couple of orders of magnitude
compared with ABL turbulence

Numerical model

• Finite-difference 2nd and 4th order schemes on rectangular staggered grids
• Conservation of momentum and energy [Morinishi et al., 1998; Vasilyev, 2000]

• Finer grid resolution in near-wall regions

• Fractional step method

• Using explicit approximation for nonlinear terms – Adams-Bashforth methods

• Multigrid method for solution of system of linear equations ~ O(N) complexity

• FD & immersed boundary methods for handling complex (& moving) geometry

staggered grid alignment

Direct numerical simulation

• Numerical solution of Navier-Stokes equations

• Passive tracers transport

• Dirichlet boundary conditions or prescribed flux

• Dynamics CPU time ~ 10 species transport [Mortikov & Debolskiy, 2021]

Buoyancy (stratified turbulence)
and Coriolis terms

Drag force:

Rayleigh friction &
Forchheimer drag – model surface
roughness elements, e.g. canopy

– different drag definitions, see
[Bhattacharjee et al., 2022]

External scalar gradient Decay with fixed life-time

Direct numerical simulation

• Lagrangian particle transport

• Trilinear interpolation

• Handling multiple sources/sinks & particle groups

• Particle decay with fixed life-time

• Elastic collisions with walls

• Calculate particles trajectories

• Two-way disperse phase/fluid coupling

• Coupling with external particle library [Varentsov, 2022]

buoyancy force:

passive particles:

drag force:

DNS as a research tool

• Large data-sets, single snapshot of velocity & pressure: O(1)-O(10) GB

• On the fly flow analysis
• Different modes of data output: 3D, 2D, 1D, point-like measurements & integral flow characteristics

• Statistics calculation: first-order moments & up to budget eqs. for second-order moments

• Spectrum analysis: 1D & 2D spectra, spectral energy density time series

• Single variable probability density functions & joint p.d.f.

• Flow manipulation at run-time, e.g. filtration

Large-scale structures (rolls)
in neutral Couette flow

Parallel implementation

• C/C++ code

• MPI domain decomposition

• Using OpenMP on multicore processors
• Overlap MPI communications with computations

• Cache-aware algorithms/thread synchronization become more important

• Each MPI process works with particles only inside the grid block it
holds – particles move from one MPI process to another

Lomonosov-2 supercomputer,
©MSU, T-platforms

MVS-10P, -10Q
supercomputers,
©RAS, RSC Group

Intel Xeon CPU
Nvidia GPU

Intel Xeon CPU
Intel Xeon Phi

MPI process with single or
multiple OpenMP threads

[Akhmed-Zaki et al., 2016]

Parallel implementation

• MPI-OpenMP CPU scaling

• Code ported on Intel Xeon Phi architecture

• Running on ARM-based CPUs (Kunpeng 920 processors)

Scaling up to 25000 cores on CSC
Mahti supercomputer (AMD EPYC)

Intranode scaling MAHTI CSC

[Mortikov and Debolskiy, 2021]

Argonne Theta Supercomputer
(4096 Intel Xeon Phi cards)

Why GPUs?

• Graphics Processing Units (GPUs) – energy
efficiency, cheap ($/FLOPs) & high performance
for some problems

• Increase in performance of supercomputers in
the last 10 years in large part due to the
advent of coprocessors: GPUs (Lomonosov-2,
Summit) or Intel Xeon Phi (Tianhe-2)

• Speed-up of hydrodynamic models when
ported to GPUs:
• x20-x40 compared with CPU core

• x2-x4 compared with CPU node

• Speed-up of molecular dynamics when ported
to GPUs:
• x500-x1000 compared with CPU core

• Adapt models & algorithms to new Frontiers:
exascale and post-exascale systems

Why GPUs?

DNS on CPU/GPU systems

• DNS model fully ported on hybrid CPU/GPU systems
• Includes dynamics, Lagrangian particles transport & run-time flow processing support on GPUs

• Using C/C++ & MPI/OpenMP/CUDA [only Nvidia GPUs]

• Just compile & run – single executable:

./exe -arch cpu

./exe -arch gpu

MPI process on CPU/GPU

all MPI processes on CPU

all MPI processes on GPU

./exe -arch mix MPI processes both on CPU/GPU

• Same setup using configuration files when running
in CPU/GPU or mixed modes

• Almost no differences in high-level code, e.g. in
implementation of time integration of NS eqs.

• Still – need support for two (CPU & GPU) low-level
versions of the code, e.g. stencil operators

• MATLAB & Python suites for data post-processing
and visualization [Akhmed-Zaki et al., 2016]

DNS on CPU/GPU systems

• Tracer/particle transport good speed-up (x10/x50) on
GPUs compared with single CPU node

• MPI data communications involve CPU-GPU
memory transfers – a scaling bottleneck

• Dynamics considerably slower – multigrid
method results in non-efficient GPU usage

• Need large grids to gain good performance
improvement on GPUs

• Mix CPU/GPU mode – needs load balancing, BUT – allows
ensemble simulations using both node CPU & GPU

CPU
core, sec

CPU
node/MPI, sec

CPU
node/OpenMP (sec)

GPU
Kepler (sec)

GPU
Pascal (sec)

GPU
Volta (sec)

164.1 28.6 27.3 35.9 13.1 8.4

648.2 108.4 110.2 83.16 28.1 13.7

- 548.8 - 141.4 67.25

GPU vs CPU speedup for scalar
transport on sphere

DNS: starting from 400 000 grid
nodes (and x8 in next rows)
CPU: Intel Xeon E5-2697 v3
2.60GHz

DNS with offload on GPU

• Offload parts of computations on GPU
• MPI process runs the code on CPU except the offloaded modules on GPU

• Tracers & particles transport are good candidates for offloading – more efficient (in terms of
both performance and scaling) on GPUs compared with dynamics module

Lagrangian particles transport:

Passive tracers transport:

Dynamics & data processing:

CPU & GPU memory transfer each
time step – may be overlapped

with computations

Conclusions

• DNS/LES/RANS models and codes have to take into
account modern-day HPC zoo
• Enable a lot of data processing at run-time

• Optimizations tuned for specific architectures
• ARM/Intel/AMD CPUs require different code optimizations

• Using CUDA shared-memory gives benefits not on all GPU
architectures in use & more

• Unified codes – much less code to code

• Adapting to novel GPU architectures
• Tensor cores, half precision …

• Running on both Nvidia & AMD GPUs

• ML-based algorithms

• Using half precision – expecting x2 improvement in
memory transfer & computations
• Is the precision enough for at least some of the model blocks?

• Enabling mixed precision algorithms Code available per request at RCC GitLab:
http://tesla.parallel.ru/

http://tesla.parallel.ru/

Thank you for your attention!

Email: evgeny.mortikov@gmail.com

pixels.com:
Whitney Knapp Bowditch

Conclusions

• DNS/LES/RANS models and codes have to take into account modern-day HPC zoo
• Enable a lot of data processing at run-time

• Optimizations tuned for specific architectures
• ARM/Intel/AMD CPUs require different code optimizations

• Using CUDA shared-memory gives benefits not on all GPU architectures in use & more

• Unified codes – much less code to code

• Adapting to novel GPU architectures
• Tensor cores, half precision …

• Running on both Nvidia & AMD GPUs

• ML-based algorithms

• Using half precision – expecting x2 improvement in memory transfer & computations
• Is the precision enough for at least some of the model blocks?

• Enabling mixed precision algorithms

Code available per request at RCC GitLab server: http://tesla.parallel.ru/

http://tesla.parallel.ru/

