Numerical simulation of atmosphere and ocean boundary layer turbulence on heterogeneous supercomputers

Mortikov E.V.^{1,2}, Debolskiy A.V.^{1,3}, Gashchuk E.M.^{4,2}, Glazunov A.V.²

¹Research Computing Center, Lomonosov Moscow State University ²Marchuk Institute of Numerical Mathematics, Russian Academy of Science ³A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Science

⁴Department of Mechanics and Mathematics, Lomonosov Moscow State University

Russian Supercomputing Days 2022

Atmosphere and ocean boundary layers

- Atmospheric boundary layer, $H_{ABL} \simeq 10^2 10^3 \text{ m}$
- Oceanic boundary layer, $H_{OBL} \simeq 10^1 10^2 \text{ m}$
- Benthic boundary layer, $H_{BBL} \simeq 10^0 10^1 \text{ m}$
- Free atmosphere and ocean interior connect through the OBL and ABL
- **Turbulence**, **stratification**, solar radiation, complex topography, clouds, surface waves, wave-turbulence interaction, Langmuir circulation etc.
- Turbulence with very high Reynolds numbers
 - ABL: Re ~ 10⁹, OBL: Re ~ 10⁶ 10⁷, BBL: Re ~ 10⁵ 10⁶
- Parameterizations for NWP and climate models
 - **INMCM**, Institute of Numerical Mathematics climate model
 - SL-AV, Vorticity-divergence semi-Lagrangian global atmospheric model – NWP model used at Russian meteorological center

Numerical simulation of turbulent flows

- **DNS Direct numerical simulation** all scales explicitly $\frac{\partial u}{\partial t}$
- LES Large eddy simulation inertial range at least partially resolved on computational grid
- RANS Reynolds averaged Navier-Stokes fully modelled turbulence

Reynolds number

Viscous length scale (size of the smallest eddies)

 $\Delta \sim (1/1000)L$ $N \sim 10^9$

Unified DNS/LES/RANS numerical model

- Unified DNS-, LES-, RANS- code developed at RCC MSU & INM RAS
- DNS
 - Navier-Stokes equations for viscous incompressible fluid
 - Boussinesq approximation for stratified flows
- LES
 - Filtered Navier-Stokes eq.
 - Smagorinsky model, SSM, AMD ...
 - Dynamic procedure

• RANS

- Non-hydrostatic urban environment model
- Hydrostatic lake model + biochemistry model (with IAP RAS)
- Two-equation turbulence models
- Multiphase flow simulations (CLSVOF)
- Lagrangian particles

 $\frac{\partial \overline{u}_i}{\partial x_i} = 0$

 $\frac{\partial \overline{u}_i}{\partial t} = -\frac{\partial \overline{u}_i \overline{u}_j}{\partial x_i} - \frac{\partial \tau_{ij}}{\partial x_i} - \frac{\partial p}{\partial x_i} + \frac{1}{\operatorname{Re}} \frac{\partial^2 \overline{u}_i}{\partial x_i \partial x_i} + \overline{F}_i^e$

 $au_{ij} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j$ – <u>closure needed</u>

 $\tau_{ij}^{smag} = -2 \left(C_s \overline{\Delta} \right)^2 \left| \overline{S} \right| \overline{S}_{ij}$

Direct numerical simulation

Numerical solution of Navier-Stokes equations – <u>no turbulence model!</u>

 F_i^e

$$\begin{aligned} \frac{\partial u_i}{\partial t} &= -\frac{\partial u_i u_j}{\partial x_j} - \frac{\partial p}{\partial x_i} + \frac{1}{\operatorname{Re}} \frac{\partial^2 u_i}{\partial x_j \partial x_j} + \\ \frac{\partial u_i}{\partial x_i} &= 0 \\ \frac{\partial T}{\partial t} + \frac{\partial u_j T}{\partial x_j} &= \frac{1}{\operatorname{PrRe}} \frac{\partial^2 T}{\partial x_j \partial x_j} \end{aligned}$$

log (Ε(κ))

Couette flow neutral stratification

 $\tilde{\mu} = \mu/L$ $\tilde{\mu} = O(\text{Re}^{-3/4})$

- viscous length scale (size of the smallest eddies)

<u>High grid resolution</u> <u>is necessary</u> $N \sim O(10^8) - O(10^9)$

[Mortikov et al., 2019]

Why DNS?

- Numerical solution of Navier-Stokes equations <u>no turbulence model!</u>
- Physics of fluids & turbulence research
- Development and verification of subgrid parameterizations for LES/RANS models
- DNS of turbulent Couette flow Re=120 000: 10⁸ grid cells, 1000 CPU cores, 72 hours of computations
 - Re=500 000 when using all CPU cores of "Lomonosov-2" for a week
 - Re=1 000 000 when using all CPU cores of "Tianhe-2" for a week
 - <u>Can we increase Re when using coprocessors, e.g.</u> <u>GPUs/Intel Xeon Phi?</u>
- How large Re is large enough?
 - Maximum Re values obtained in DNS comparable with OBL, but still lower by a couple of orders of magnitude compared with ABL turbulence

Numerical model

- Finite-difference 2nd and 4th order schemes on rectangular staggered grids
 - Conservation of momentum and energy [Morinishi et al., 1998; Vasilyev, 2000]
 - Finer grid resolution in **near-wall regions**
- Fractional step method

$$\frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \left(\mathbf{u} \cdot \nabla \mathbf{u}\right)^{n+\frac{1}{2}} = \frac{1}{\operatorname{Re}} \left(\nabla^2 \mathbf{u}\right)^{n+\frac{1}{2}} - \nabla p^{n+1} + (\mathbf{F}^e)^{n+\frac{1}{2}}$$

 $\nabla \cdot \mathbf{u}^{n+1} = 0$ $\int \mathbf{u}^{n+1} = p^n + \phi^{n+1}$ $\frac{\tilde{\mathbf{u}} - \mathbf{u}^n}{\Delta t} + (\mathbf{u} \cdot \nabla \mathbf{u})^{n+\frac{1}{2}} = \frac{1}{\text{Re}} \left(\nabla^2 \mathbf{u} \right)^{n+\frac{1}{2}} - \nabla p^n + (\mathbf{F}^e)^{n+\frac{1}{2}}$ $\frac{\mathbf{u}^{n+1} - \tilde{\mathbf{u}}}{\Delta t} = -\nabla \phi^{n+1}$ $\nabla \cdot \mathbf{u}^{n+1} = 0$ $\int \nabla \cdot \nabla \phi^{n+1} = \frac{\nabla \cdot \tilde{\mathbf{u}}}{\Delta t}$ $\mathbf{u}^{n+1} = p^n + \phi^{n+1}$

- Using explicit approximation for nonlinear terms Adams-Bashforth methods
- Multigrid method for solution of system of linear equations ~ O(N) complexity
- FD & immersed boundary methods for handling complex (& moving) geometry

Direct numerical simulation

• Numerical solution of Navier-Stokes equations

 $\frac{\partial u_i}{\partial t} = -\frac{\partial u_i u_j}{\partial x_i} - \frac{\partial p}{\partial x_i} + \frac{1}{\operatorname{Re}} \frac{\partial^2 u_i}{\partial x_i \partial x_j} + F_i^e$ $\frac{\partial u_i}{\partial x_i} = 0$ $\frac{\partial T}{\partial t} + \frac{\partial u_j T}{\partial x_i} = \frac{1}{\Pr \text{Re}} \frac{\partial^2 T}{\partial x_i \partial x_i}$

Passive tracers transport

Decay with fixed life-time

- Dirichlet boundary conditions or prescribed flux
- Dynamics CPU time ~ 10 species transport [Mortikov & Debolskiy, 2021]

Buoyancy (stratified turbulence) and **Coriolis** terms

Drag force:

Rayleigh friction & Forchheimer drag – model surface roughness elements, e.g. canopy

 $\mathbf{F}_d = C_d a(z) |\overline{\mathbf{u}}| \overline{\mathbf{u}}$

- different drag definitions, see [Bhattacharjee et al., 2022]

Direct numerical simulation

Lagrangian particle transport

$$\frac{d\mathbf{x}_i(t)}{dt} = \mathbf{v}_i$$
$$m_i \frac{d\mathbf{v}_i(t)}{dt} = \mathbf{f}_B + \mathbf{f}_D + \dots$$

passive particles:

$$\mathbf{v}_i = \mathbf{u}(\mathbf{x}_i(t), t)$$

- Trilinear interpolation
- Handling multiple sources/sinks & *particle groups*
- Particle decay with fixed life-time
- Elastic collisions with walls
- Calculate particles trajectories

- Two-way disperse phase/fluid coupling $\mathbf{F}_k^e = (1/
 ho_f)\sum -\mathbf{f}_D\delta_k(\mathbf{x}_p)$
- Coupling with external particle library [Varentsov, 2022]

drag force:

$$\mathbf{f}_{D} = m_{i} \frac{(\mathbf{u}(\mathbf{x}_{i}(t), t) - \mathbf{v}_{i})}{\tau_{i}} g(\operatorname{Re}_{i})$$

$$\tau_{i} = \frac{\rho_{i} d_{i}^{2}}{18\nu}, \operatorname{Re}_{i} = \frac{\rho_{f} d_{i} |\mathbf{u}(\mathbf{x}_{i}(t), t) - \mathbf{v}_{i}|}{\nu}$$

buoyancy force: $\mathbf{f}_B = \left(
ho_i -
ho_f
ight) V_i g$

DNS as a research tool

- Large data-sets, single snapshot of velocity & pressure: O(1)-O(10) GB
- On the fly flow analysis
 - Different modes of data output: 3D, 2D, 1D, point-like measurements & integral flow characteristics
 - Statistics calculation: first-order moments & up to budget eqs. for second-order moments

$$\frac{D\langle u_i u_k \rangle}{Dt} = \left(-\langle u_i u_j \rangle \frac{\partial U_k}{\partial x_j} - \langle u_k u_j \rangle \frac{\partial U_i}{\partial x_j} \right) - \frac{\partial \langle u_i u_j u_k \rangle}{\partial x_j} - \left\langle u_k \frac{\partial p}{\partial x_i} + u_i \frac{\partial p}{\partial x_k} \right\rangle
+ \frac{g}{\theta_0} \left(\delta_{k3} \langle u_i \theta \rangle + \delta_{i3} \langle u_k \theta \rangle \right) + \nu \left\langle u_k \frac{\partial^2 u_i}{\partial x_j \partial x_j} + u_i \frac{\partial^2 u_k}{\partial x_j \partial x_j} \right\rangle$$

- Spectrum analysis: 1D & 2D spectra, spectral energy density time series
- Single variable probability density functions & joint p.d.f.

Parallel implementation

- C/C++ code
- MPI domain decomposition

• Using OpenMP on multicore processors

- Overlap MPI communications with computations
- Cache-aware algorithms/thread synchronization become more important
- Each MPI process works with particles only inside the grid block it holds – particles move from one MPI process to another

• MPI-OpenMP CPU scaling

- Code ported on Intel Xeon Phi architecture
- Running on ARM-based CPUs (Kunpeng 920 processors)

	AMD Rome 7H12	Intel Xeon Gold 6140	Kunpeng 920
single core, x2 and (x4)	39.94(54.58)	48.53(59.84)	123.70(166.28)
max cores, $x2$ and $(x4)$	2.16(2.89)	5.94(7.94)	2.12(2.90)

Table 1. LR case run-time, in seconds per 1000 time steps $% \mathcal{T}_{\mathrm{T}}$

Table 2. HR case run-time, in seconds per 1000 time steps

	AMD Rome 7H12	Intel Xeon Gold 6140	Kunpeng 920
single core, x2 and (x4)	$285.23 \ (372.19)$	$391.11 \ (458.09)$	$1018.81 \ (1511.12)$
max cores, $x2$ and $(x4)$	$10.23\ (13.49)$	$26.83\ (32.81)$	$18.27\ (25.02)$

Scaling up to 25000 cores on CSC Mahti supercomputer (AMD EPYC)

Argonne Theta Supercomputer (4096 Intel Xeon Phi cards)

[Mortikov and Debolskiy, 2021]

Why GPUs?

- Graphics Processing Units (GPUs) energy efficiency, cheap (\$/FLOPs) & high performance for some problems
- Increase in performance of supercomputers in the last 10 years in large part due to the advent of coprocessors: GPUs (Lomonosov-2, Summit) or Intel Xeon Phi (Tianhe-2)
- Speed-up of <u>hydrodynamic models</u> when ported to GPUs:
 - x20-x40 compared with CPU core
 - x2-x4 compared with CPU node
- Speed-up of <u>molecular dynamics</u> when ported to GPUs:
 - x500-x1000 compared with CPU core
- Adapt models & algorithms to new Frontiers: exascale and post-exascale systems

Why GPUs?

Количество гибридных систем (по наличию ускорителей) в редакциях Тор50

DNS on CPU/GPU systems

DNS model fully ported on hybrid CPU/GPU systems

- Includes dynamics, Lagrangian particles transport & run-time flow processing support on GPUs
- Using C/C++ & MPI/OpenMP/CUDA [only Nvidia GPUs]
- Just compile & run single executable:

- Same setup using configuration files when running in CPU/GPU or mixed modes
- Almost no differences in high-level code, e.g. in implementation of time integration of NS eqs.
- <u>Still need support for two (CPU & GPU) low-level</u>
 <u>versions of the code</u>, e.g. stencil operators
- MATLAB & Python suites for data post-processing and visualization

DNS on CPU/GPU systems

- Tracer/particle transport good speed-up (x10/x50) on GPUs compared with single CPU node
- MPI data communications involve CPU-GPU memory transfers – a scaling bottleneck
- **Dynamics considerably slower** multigrid method results in non-efficient GPU usage
- Need large grids to gain good performance improvement on GPUs

 Mix CPU/GPU mode – needs load balancing, BUT – allows ensemble simulations using both node CPU & GPU

CPU core, sec	CPU node/MPI, sec	CPU node/OpenMP (sec)	GPU Kepler (sec)	GPU Pascal (sec)	GPU Volta (sec)
164.1	28.6	27.3	35.9	13.1	8.4
648.2	108.4	110.2	83.16	28.1	13.7
-	548.8		-	141.4	67.25

DNS: starting from 400 000 grid nodes (and x8 in next rows) CPU: Intel Xeon E5-2697 v3 2.60GHz

DNS with offload on GPU

Offload parts of computations on GPU

- MPI process runs the code on CPU **except** the offloaded modules on GPU
- Tracers & particles transport are good candidates for offloading more efficient (in terms of both performance and scaling) on GPUs compared with dynamics module

Lagrangian particles transport:

$$\frac{d\mathbf{x}_i(t)}{dt} = \mathbf{v}_i, m_i \frac{d\mathbf{v}_i(t)}{dt} = \mathbf{f}_B + \mathbf{f}_D + \dots$$

 Passive tracers transport:

$$\frac{\partial C_k}{\partial t} + \frac{\partial u_j C_k}{\partial x_j} = \frac{1}{\operatorname{ScRe}} \frac{\partial^2 C_k}{\partial x_j \partial x_j} + F_k$$

 Dynamics & data processing:

$$\frac{\partial u_i}{\partial t} = -\frac{\partial u_i u_j}{\partial x_j} - \frac{\partial p}{\partial x_i} + \frac{1}{\operatorname{Re}} \frac{\partial^2 u_i}{\partial x_j \partial x_j} + F_i^e$$

$$\frac{\partial C_k}{\partial t} + \frac{\partial u_j C_k}{\partial x_j} = \frac{1}{\operatorname{ScRe}} \frac{\partial^2 C_k}{\partial x_j \partial x_j} + F_k$$

CPU & GPU memory transfer each time step – may be overlapped with computations

Conclusions

- DNS/LES/RANS models and codes have to take into account modern-day HPC zoo
 - Enable <u>a lot of data processing</u> at run-time
- Optimizations tuned for specific architectures
 - ARM/Intel/AMD CPUs require different code optimizations
 - Using CUDA shared-memory gives benefits not on all GPU architectures in use & more
- Unified codes much less code to code 😳
- Adapting to novel GPU architectures
 - Tensor cores, half precision ...
 - Running on both Nvidia & AMD GPUs
 - ML-based algorithms
- Using half precision expecting x2 improvement in memory transfer & computations
 - Is the precision enough for at least some of the model blocks?
 - Enabling mixed precision algorithms

Code available per request at RCC GitLab: <u>http://tesla.parallel.ru/</u>

Thank you for your attention! Email: evgeny.mortikov@gmail.com

pixels.com: Whitney Knapp Bowditch

Conclusions

• DNS/LES/RANS models and codes have to take into account modern-day HPC zoo

• Enable a lot of data processing at run-time

Optimizations tuned for specific architectures

- ARM/Intel/AMD CPUs require different code optimizations
- Using CUDA shared-memory gives benefits not on all GPU architectures in use & more
- Unified codes much less code to code 😳

Adapting to novel GPU architectures

- Tensor cores, half precision ...
- Running on both Nvidia & AMD GPUs
- ML-based algorithms

• Using half precision – expecting x2 improvement in memory transfer & computations

- Is the precision enough for at least some of the model blocks?
- Enabling mixed precision algorithms