ИССЛЕДОВАНИЕ МЕХАНИКИ ПОЛЁТА МЕЛЬЧАЙШИХ НАСЕКОМЫХ С помощью суперкомпьютера ЛОМОНОСОВ-2

С. Фарисенков¹, <u>Д. Коломенский²</u>, П. Петров¹, Н. Лапина¹, Ф.-О. Леманн³, Р. Ониши⁴, Х. Лю⁵, **А.** Полилов¹

¹МГУ имени М. В. Ломоносова ²Сколтех ³Ростокский Университет, Германия ⁴Токийский технологический Институт, Япония ⁵Университет Тибы, Япония

Соавторы

Кафедра Энтомологии, Московский Государственный Университет

Алексей Полилов

- Сергей Фарисенко В
- Пётр Петров

Надежда Лапина

Лаборатория Проф. Рё Ониши, Токийский Технологический Университет, Япония

AIFI

Aerodynamics of Insect Flight In Turbulent Flow

http://aifit.cfd.tu-berlin.de

Thomas Marie Engels Farge (TU Berlin) (ENS Paris)

Jörn Sesterhenn (TU Berlin)

Fritz-Olaf Lehmann (Rostock)

Лаборатория Проф. Хао Лю, Университет Тибы, Япония

Henja Wehmann (Rostock)

Kai Schneider (Aix-Marseille)

Hung Truong (Aix-Marseille)

Мельчайшие перокрылые жуки

Фарисенков, Полилов (2022)

Скоростная макровидеосъемка

Скоростные камеры. Проходящий ИК свет. 5000 кадров в секунду

Фарисенков, Полилов (2022)

Сравнение скорости полёты мельчайших жуков

Udo Shmidt

Птилоптеригия: перокрылость

Связь числа Рейнольдса и скорости движения

Коэффициент аэродинамической силы

Обтекание воздухом решётки цилиндров

Профили скорости при различных значениях Re

... течение Стокса

Морфометрия перистого крыла

- Амплитуда взмахов

ПО для численного моделирования полёта насекомых

Решатель WABBIT разработан в рамках проекта **AIFIT** https://github.com/adaptive-cfd/WABBIT

- Метод искусственной сжимаемости
- Метод штрафных функций для условия прилипания
- Блочно-структурированная сетка
- Динамическая адаптация по решению с оценкой погрешности
- **МРІ параллелизм** •

T. Engels, K. Schneider, J. Reiss and M. Farge, A Wavelet-Adaptive Method for Multiscale Simulation of Turbulent Flows in Flying Insects Commun. Comput. Phys., 30 (2021), pp. 1118-1149. https://doi.org/10.4208/cicp.OA-2020-0246

Метод штрафных функций для ГУ прилипания

Модифицированные уравнения Навье-Стокса:

$$\partial_{t}\underline{\mathbf{u}} + \underline{\mathbf{\omega}} \times \underline{\mathbf{u}} = -\nabla\Pi + \nu\nabla^{2}\underline{\mathbf{u}} + \underline{\mathbf{F}}_{p} - \frac{\chi}{\mathbf{C}_{\eta}}\left(\underline{\mathbf{u}} - \underline{\mathbf{u}}_{s}\right)$$
$$\nabla \cdot \underline{\mathbf{u}} = \mathbf{0}$$

$$\underline{u}\left(\underline{x},t=0\right) \quad = \quad \underline{u}_0\left(\underline{x}\right)$$

- Вязкая несжимаемая жидкость
- Недеформируемое твёрдое тело
- Граничные условия прилипания выполняются приблизительно

$$\chi\left(\underline{x},t\right) = \begin{cases} 0 & \text{if } \underline{x} \in \Omega_{f} \\ 1 & \text{if } \underline{x} \in \Omega_{s} \end{cases}$$

χ=1 . 1.

DK and K. Schneider

A Fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles J. Comput. Phys. 228:5687-5709 (2009)

Влияние штрафного параметра

- С_п можно интерпретировать как характеристику проницаемости
- С_п является временем релаксации
- С_п должно быть малым

$$\partial_{t}\underline{\mathbf{u}} = -\frac{\chi}{C_{\eta}} (\underline{\mathbf{u}} - \underline{\mathbf{u}}_{s})$$

$$\underbrace{\underline{u}} = \underline{u}_{0} \quad \text{if} \quad \underline{x} \in \Omega_{f}$$

$$\underbrace{\underline{u}} = \underline{u}_{s} + (\underline{u}_{0} - \underline{u}_{s})e^{-t/C_{\eta}} \quad \text{if} \quad \underline{x} \in \Omega_{s}$$

- Жёсткость оператора: $dt < C_n$ при явном интегрировании по времени
- Внутренний пограничный слой в твёрдом теле

Плоское течение Пуазейля

• Внутренний пограничный слой в твёрдом теле

Метод искусственной сжимаемости

Вместо уравнения Пуассона решается уравнение переноса поля давления. При достаточно малом C_0 решение системы уравнений с искусственной сжимаемостью сходится к решению несжимаемых уравнений Навье-Стокса.

$$\partial_{t}\underline{u} + \underline{u} \cdot \nabla \underline{u} + \nabla p - \nu \nabla^{2}\underline{u} + \frac{\chi}{C_{\eta}} \left(\underline{u} - \underline{u}_{s}\right) + \frac{\chi_{\rm sp}}{C_{\rm sp}} \left(\underline{$$

$-\underline{u}_{\infty}) = 0$

$(-p_{\infty})=0$

Динамическая адаптация сетки

Parallel load balancing using space-filling curve

Для оценки погрешности и динамической адаптации сетки используются биортогональные вейвлеты

$$v(x) = \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) = \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{\infty} \sum_{i \in \mathbb{Z}} \left\langle v, \widetilde{\phi_i^0}(x) \right\rangle \phi_i^0(x) + \sum_{J=0}^{$$

 $\sum_{i=1}^{n} \left\langle v, \widetilde{\psi_{i}^{J}}(x) \right\rangle \psi_{i}^{J}(x)$

Схемы Рунге-Кутты-Чебышёва

- При малом числе Рейнольдса возникает проблема: действительная часть собственных значений возрастает пропорционально квадрату шага сетки
- Это приводит к непрактизном у ограничению шага по времени:
- Константа b Зависит от схеть b Are (сурания по времени. Классическая схема Рунге-Кутты 4 порядка имеет *b*≈2.7.
- Схемы Рунге-Кутты-Чебышёва могут иметь b>>1.

[1] B. P. Sommeijer, L. F. Shampine, and J. G. Verwer. RKC: An explicit solver for parabolic PDEs. J. Comput. Appl. Math, 88:315–326, 1997.

[2] J. G. Verwer, W. H. Hundsdorfer, and B.P. Sommeijer. Convergence properties of the runge-kutta-chebyshev method. Numer. Math., 57:157–178, 1989. [3] JG Verwer, BP Sommeijer, and W Hundsdorfer. RKC time-stepping for advection-diffusion-reaction problems. J Comput. Phys., 201:61–79, 2004.

Схемы Рунге-Кутты-Чебышёва

Область устойчивости схема Рунге-Кутты 4 порядка

Собственные значения оператора одномерной задачи с параметрами

$$B_s = 23$$
 $J_{\text{max}} = 7$
 $L = 4.6$ $K_{\eta} = 0.5$
 $\nu = 6.95 \cdot 10^{-2}$
 $C_0 = 20.0$

Область устойчивости схемы Рунге-Кутты-Чебышёва с параметрами $s = 7, \epsilon = 1.76$

1 211 370 вызовов программы вычисления правой части при использовании схемы Рунге-Кутты 4 порядка, 119 466 вызовов программы вычисления правой части при использовании схемы Рунге-Кутты-Чебышёва.

Схемы Рунге-Кутты-Чебышёва

• При большом числе ступеней можно добиться очень большой области устойчивости.

Область устойчивости схемы Рунге-Кутты 4 порядка.

Численная верификация: обтекание круглого цилиндра

Kinematic viscosity v = 20 and 2 (2 cases) Reynolds number Re=Ub/v = 0.05 and 0.5 b=123x23x23 grid points $L_{v} = 8800$ per block Number of refinement levels 10, 11, 12 and 13 (4 cases) Artificial speed of sound $c_0 = 30.38$ $L_{x} = 8800$ Density $\rho = 1$ The volume penalization parameter is $C_n = (0.5\Delta x_{min})^2 \nu^{-1}$

Коэффициент сопротивления цилиндра

	$Re_b = 0.05$			$Re_b = 0.5$		
	C_D	C_{Dp}/C_D	$C_{D\tau}/C_D$	C_D	C_{Dp}/C_D	$C_{D\tau}/C_D$
Present work, $\frac{b}{\Delta x_{min}} = 2.56$	96.23	0.29	0.71	15.51	0.29	0.71
Present work, $\frac{b}{\Delta x_{min}} = 5.12$	99.51	0.36	0.64	16.30	0.36	0.64
Present work, $\frac{b}{\Delta x_{min}} = 10.24$	100.93	0.42	0.58	16.63	0.42	0.58
Present work, $\frac{b}{\Delta x_{min}} = 20.48$	101.38	0.46	0.54	16.70	0.46	0.54
Dennis and Shimshoni (1965)	98.56	0.50	0.50	17.06	0.50	0.50
Khalili and Liu (2017)	96.58	-	-	16.49	-	-

Коэффициент силы сопротивления: $C_D = \frac{2D}{\rho U^2 b}$

Коэффициент силы сопротивления дав $\mathfrak{A}_{p,H}$

Коэффициент силы сопротивления требуя $\div \frac{2D_{\tau}}{\rho U^2 b}$

Результаты на момент времени *t_{max}* = 250 конвективных единиц

Аэродинамическое моделирование перистого крыла

Мембранозная модель

Форма крыла

Крыло мельчайшего жука Paratuposa placentis (Deane, 1931)

Образец из национального парка Cát Tiên во Вьетнаме

Форма крыла (масштабный эксперимент)

b/R = 0.00388

Форма крыла (численное моделирование)

Масштабное моделирование вращающегося крыла

- Раствор глицерина в воде, ванна размерами 50 см × 80 см × 25 см
- Кинематическая вязкость $v = 360 \text{ мм}^2 \text{ c}^{-1}$
- Частота вращения *f* = 0.04, 0.08, 0.12, 0.16, 0.2 и 0.4 об/с
- *Re* = $\Omega r_a c_{mean}$ / v = 2.0, 4.0, 5.9, 7.9, 9.9, 19.8 и 34.6

Численное моделирование вращающегося крыла

- Значения всех физических параметров заданы исходя из динамического подобия эксперименту
- *J_{max}=8* уровней адаптации сетки
- 23х23х23 узлов сетки на блок
- Шаг сетки в 6 раз меньше диаметра щетинки
- Искусственная скорость звука $c_0 = 30.38 \Omega R$
- Объемный штрафной параметр C_η = 7.82×10⁻⁶ /Ω
- Порог вейвлет-коэффициентов ε = 10⁻³

Аэродинамические силы

Перистое крыло в сравнении с мембранозным

Два разных способа машущего полёта

Полёт с помощью силы сопротивления

Jones et al, JTB 2015

Два разных способа машущего полёта

Полёт с помощью силы сопротивления

Jones et al, JTB 2015

Численное моделирование машущего полёта

- Полёт на месте (*V/fR* < 0.2)
- Температура воздуха 24°С
- Частота взмахов *f* = 184±8 Гц
- Длина крыла *R* = 0.49 мм
- 25х25х25 узлов сетки на блок
- Шаг сетки в 6 раз меньше диаметра щетинки
- Искусственная скорость звука $c_0 = 25 f R^2$
- Объемный штрафной параметр $C_{\rm n} \propto (\Delta x_{\rm min})^2/v$
- Порог вейвлет-коэффициентов ε = 10⁻²

Геометрическая и кинематическая модель

Масса мембранозных крыльев

• • •	
μm μm /linoidea	
gression ression	
10	00

Динамическая адаптация сетки

Визуализация результатов расчёта

Диаграмма сил

Аэродинамические и инерционные нагрузки

Вращательное движение тела

Положительное направление – нос вниз

Факторы эффективности полета перокрылых

- Вычислительные ресурсы Ломоносов-2 (2183) и IDRIS (A0102A01664)
- Гранты РНФ (19-14-00045),
 DFG (LE905/16-1,LE905/18-1),
 JSPS (18К13693,19H02060)

Explore content v About the journal v Publish with us v

nature > articles > article

Article | Open Access | Published: 19 January 2022

Novel flight style and light wings boost flight performance of tiny beetles

<u>Sergey E. Farisenkov</u> ^I, <u>Dmitry Kolomenskiy</u>, <u>Pyotr N. Petrov</u>, <u>Thomas Engels</u>, <u>Nadezhda A. Lapina</u>, <u>Fritz-</u> <u>Olaf Lehmann</u>, <u>Ryo Onishi</u>, <u>Hao Liu</u> & <u>Alexey A. Polilov</u> ^I

Nature 602, 96–100 (2022) Cite this article

