Implementation of discrete element method to the simulation of solid materials fracturing

Veronica Chepelenkova¹, Vadim Lisitsa²

¹ Novosibirsk State University

² Institute of Mathematics SB RAS

Сеточные методы

Методы частиц

Sanz P. F. Modeling rock folding with large deformation frictional contact mechanics : дис. – Ph. D. Thesis, Stanford University, California, USA, 2008.

2.5 km

Hardy S., Finch E. Discrete-element modelling of detachment folding //Basin Research. – 2005. – T. 17. – №. 4. – C. 507-520.

Силы взаимодействия

Силы взаимодействия

$$\begin{split} \vec{f} &= f^n \vec{n} + f^t \vec{t}, \quad \vec{n} = \frac{\vec{r}_{ij}}{||\vec{r}_{ij}||}, \\ \delta &= a_i + a_j - ||\vec{r}_{ij}||, \\ \delta &= a_i + a_j - ||\vec{r}_{ij}||, \\ f^n &= \begin{cases} k_r^n \delta, \quad \delta > 0, \\ k_a^n \delta, \quad -d_{crit} < \delta < 0, \\ 0, \quad \delta < -d_{crit}, \end{cases} \end{split}$$

Численное интегрирование

Выбор соседей

Расчетная область разбивается на сетку с размером ячеек

 $h_g = 2a_{max} + \Delta h$ $w_g = 2a_{max} + \Delta w$

- Каждая ячейка содержит информацию о частицах, центры которых лежат внутри этой ячейки
- Каждая частица содержит информацию о номере ячейки, которой она принадлежит

Выбор соседей

Расчетная область разбивается на сетку с размером ячеек

 $h_g = 2a_{max} + \Delta h$ $w_g = 2a_{max} + \Delta w$

- Каждая ячейка содержит информацию о частицах, центры которых лежат внутри этой ячейки
- Каждая частица содержит информацию о номере ячейки, которой она принадлежит

Выбор соседей

Расчетная область разбивается на сетку с размером ячеек

 $h_g = 2a_{max} + \Delta h$ $w_g = 2a_{max} + \Delta w$

- Каждая ячейка содержит информацию о частицах, центры которых лежат внутри этой ячейки
- Каждая частица содержит информацию о номере ячейки, которой она принадлежит

Выбор соседей со связями

- Частицы считаются связанными, если на момент окончания упаковки для них δ > 0.
- Число соседей со связью для заданной частицы можно оценить как

Подготовительный этап

- Создание расчетной области
- Генерация частиц
- Построение сетки
- Заполнение частицами для каждой ячейки
- Присвоение частицам номеров ячеек
- Перенос данных на GPU
- Выбор соседей

CPU

- Пока энергия в системе ненулевая:
 - Применение схемы Верле (1 шаг) Ο
 - Обновление номеров ячеек для Ο частиц
 - Обновление содержимого ячеек Ο
 - Обновление списков соседей Ο
 - Применение схемы Верле (2 шаг) Ο
 - Расчет энергии в системе Ο
- Установление связей

CPU

- Пока энергия в системе ненулевая:
 - о Применение схемы Верле (1 шаг)
 - Обновление номеров ячеек для частиц
 - о Обновление содержимого ячеек
 - о Обновление списков соседей
 - о Применение схемы Верле (2 шаг)
 - о Расчет энергии в системе

- о Применение схемы Верле (1 шаг)
- Обновление номеров ячеек для частиц
- о Обновление содержимого ячеек
- о Обновление списков соседей
- о Применение схемы Верле (2 шаг)
- \circ Расчет ε_{yy} и средних напряжений

Численный эксперимент

Входные данные

Параметр	Значение
N	4000
а _{тіп} , м	10
а _{тах} , м	15
$ ho$, kg/м 3	2630
k_r^n , 10 ⁹ Н/м	128
k_a^n , 10 ⁹ Н/м	128
<i>k^t</i> , 10 ⁹ Н/м	$0.1 - 1 k_r^n$
d_{crit} , м	$0.01 - 0.07 a_{max}$
μ_s	0.0 - 0.7
μ_d	μ_s
w imes h, м	1260×2520
γ	0.7

Для имеющихся наборов входных параметров

$$d_{crit}/a_{max} = (0.01, 0.03, 0.05, 0.07), k^t/k^n = (0.1, 0.3, 0.5, 0.7), \mu = (0.0, 0.1, 0.3, 0.5)$$

и выходных данных $\sigma_{max,ijk} = \sigma_{max} (d_{crit,i}, (k^t/k^n)_j, \mu_k), E_{ijk} = E(d_{crit,i}, (k^t/k^n)_j, \mu_k)$

нужно построить наилучшее приближение $\sigma_{max} = \sigma_{max}(d_{crit}, k^t/k^n, \mu), E_{ijk} = E(d_{crit,i}, k^t/k^n, \mu).$

Для функции f(x, y, z) в предположении, что x, y, z являются независимыми переменными, имеет место $f(x, y, z) \approx \sum_{i=0}^{N_i} \alpha^{N_i+1-i}(y, z) x^i,$ $\alpha^i(y, z) \approx \sum_{j=0}^{N_j} \beta^{i,(N_j+1-j)}(z) y^j,$ $\beta^{i,j}(z) \approx \sum_{j=0}^{N_k} \gamma^{i,j,(N_k+1-k)} z^k,$ где $\alpha^i, \beta^{i,j}, \gamma^{i,j,k}$ являются коэффициентами, полученными методом

наименьших квадратов.

Параметр	Значение
k^t , Н/м	0.7 k_r^n
d_{crit} , м	$0.01 - 0.07 a_{max}$
μ_s	0.0 – 0.5

Добавим в рассмотрение $\mathbf{k}^n = (50, 100, 150, 200) \cdot 10^9$ Н/м. Тогда при $\mu = 0.3$:

Выводы

В данной работе:

- Приведена реализация алгоритма численного моделирования поведения упругих сред в тестах на одноосное сжатие с использованием архитектуры параллельных вычислений CUDA.
- Получен набор из 400 диаграмм напряжения-деформаций для всех возможных комбинаций исследуемых входных параметров.
- Показано, что модуль Юнга и прочность тела на сжатие демонстрируют рост при увеличении значения каждого из варьируемых параметров
- Показано, что предельные нагрузки, приложенные к телу, линейно возрастают с ростом касательной жесткости и длины связей, и квадратично возрастают с ростом коэффициента трения.
- Проведены дополнительные расчеты для выявления зависимости модуля Юнга от нормальной жесткости.

Спасибо за внимание!