Deep machine learning investigation of phase transitions

Vladislav Chertenkov^{1,2}

Evgeni Burovski^{1,2}

Graduate student

Associate Professor

Lev Schur^{1,2}

Department Head, Professor

¹ Landau Institute for Theoretical Physics, Chernogolovka, Russia
² HSE University, Moscow, Russia

Program

1	BRIEF INTRODUCTION	We present two spin models and describe some details of the data generation.	9 MIN
2	MACHINE LEARNING	We describe the deep learning approach we use for the analysis.	3 MIN
3	RESULTS & OUTLOOK	We present the results of our investigation and discuss the prospects for further research.	4 MIN
4	QUESTIONS SECTION	We answer your questions.	4 MIN

spin up $\sigma = +1$ spin down $\sigma = -1$

Periodic boundary conditions

Ising model¹

- o Square lattice 🗌
- o Interacts 4 neighbors

Baxter-Wu model²

- \circ Triangular lattice Δ
- o Interacts 6 neighbors

$$H_{is} = -\frac{J}{2} \sum_{\langle i,j \rangle} \sigma_i \cdot \sigma_j$$

 $H_{bw} = -J \cdot \sum_{\langle faces \rangle} \sigma_i \cdot \sigma_j \cdot \sigma_k$

1 Lars Onsager. "Crystal statistics. I. A two-dimensional model with an order-disorder transition". In: Physical Review 65.3-4 (1944), p. 117

2 Rodney J Baxter and FY Wu. "Ising model on a triangular lattice with three-spin interactions. I. The eigenvalue equation". In: Australian Journal of Physics 27.3 (1974), pp. 357–368.

Phase transition

Ferromagnetic phase

T = 1.869 Low-temperature

Transition point

 $T_c = 2.269$ Critical temperature

T = 2.719 High-temperature

Paramagnetic phase

Generate uncorrelated data

Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse.¹ \bigcirc A. Sokal

error ~ $1/\sqrt{n_iter}$

¹ Alan Sokal. "Monte Carlo methods in statistical mechanics: foundations and new algorithms". In: Functional integration. Springer, 1997, pp. 131-192.

Generate uncorrelated data

Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse.¹ © A. Sokal

error ~ $1/\sqrt{n_{iter}}$

Metropolis Monte Carlo (single spin flip)

initialize spins repeat N_{flip} times: pick random spin if $\Delta E < 0 \rightarrow$ update else if $\exp(-\Delta E/T) \ge rnd() \rightarrow$ update Let L = 243, $N_T = 126$ $N_{img} = 189\ 000\ (1500\ \text{per T})$ $N_{flip} = 20 \cdot t_{corr} \cdot N_T + 2\ t_{corr} \cdot N_{img}$ $\approx 3 \cdot 10^{15}$ $t_{corr} = L^2 \cdot L^{2.15}$

¹ Alan Sokal. "Monte Carlo methods in statistical mechanics: foundations and new algorithms". In: Functional integration. Springer, 1997, pp. 131-192.

Conventional method

Finite-size scaling (FSS)

Typical thermodynamic quantity **Q(T)** scales when system size **L** increases

Conventional method

Finite-size scaling (FSS)

Typical thermodynamic quantity **Q(T)** scales when system size **L** increases

Extract critical exponent

Finite-size scaling (FSS) of thermodynamic quantities

Model	Universality class	α from C	β from M	γ from χ	v any
lsing	lsing	0	1/8	7/4	1
Baxter-Wu	4-st. Potts	2/3	1/12	7/6	2/3

Recent advances

In "Machine learning phases of matter¹" applied neural network (NN) to predict phase of spin configuration (image).

Recent advances

In "Machine learning phases of matter¹" applied neural network (NN) to predict phase of spin configuration (image).

trained & predicted $T_c = 2.266(2)$

2D Ising [square]

Recent advances

In "Machine learning phases of matter¹" applied neural network (NN) to predict phase of spin configuration (image).

1.0 0.8 L = 10Output layer 0.6 = 20 = 30 = 40 0.4 L = 60Output 0.2 Input Hidden 0.0 2.0 2.5 3.0 1.5 3.5 1.0 T/J

trained & predicted $T_c = 2.266(2)$

2D Ising [square]

predicted $T_c = 3.65(1)$

Juan Carrasquilla and Roger G Melko. "Machine learning phases of matter". In: Nature Physics 13.5 (2017), pp. 431–434.

NN method

NN method

NN method

output variance V(T)

Architectures

FCNN

ConvNN

ResNet¹ family (10, 18, 34, 50 layers)

¹ Kaiming He et al. "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

Exponents estimation

Model	1/ν	1/ν	1/ν
	theoretical	conventional	NN method
Ising	1	1.02(5)	1.06(7)

Exponents estimation

Model	1/ν	1/ν	1/ν
	theoretical	conventional	NN method
Ising	1	1.02(5)	1.06(7)

Model	1/ν	1/v	1/ν
	theoretical	conventional	NN method
Baxter-Wu	1.5	1.52(3)	1.49(1)

Depth dependence

Models

Model	#params, 10 ⁶
ResNet-10	4.9
ResNet-18	11.2
ResNet-34	21.3
ResNet-50	23.5

Depth dependence

23

Conclusion

- Estimate critical exponents ν for both models with the same accuracy using conventional (FSS) & NN methods.
- No evidence that the quality v extraction depends on the number of convolutional layers (different ResNet-s).
- Fluctuation of the NN output as a function of temperature has a characteristic Gaussian shape.
- NN learns the location of the phase transition, critical exponent ν of the universality class of the model.

Outlook

- Transfer learning: whether and to what accuracy an NN trained on one model, predicts critical properties of a different model in the same universality class?
- $\circ~$ Whether NN learns only the correlation length exponent $\nu,$ or if other critical exponents can be extracted from the NN outputs?

Acknowledgements

This work is supported by the grant 22-11-00259 of the Russian Science Foundation. Simulations were done using the computational resources of HPC¹ facilities at HSE University.

¹ PS Kostenetskiy, RA Chulkevich, and VI Kozyrev. "HPC resources of the higher school of economics". In: Journal of Physics: Conference Series. Vol. 1740. 1. IOP Publishing. 2021, p. 012050.

Appendix

Samples generating

Intel Xeon Gold 6152

Time required to generate data for Ising model:

Size	Total single CPU time, hour	Real time, hour
48	65	0.5
72	354	2.9
96	1071	8.5
144	6098	48
216	20492	162

NN training

NVIDIA Tesla V100-SXM2 32 GB

Training time for one epoch, Ising model, L=48:

NN type	#params, 10 ⁶	Time, s/epoch
ConvNN	0.59	108
FCNN	0.23	66
ResNet-10	4.9	534
ResNet-18	11.2	1200
ResNet-34	21.3	2369
ResNet-50	23.5	2590