
Root causing MPI workloads
imbalance issues via scalable MPI
Critical Path analysis

Artem Shatalin, Vitaly Slobodskoy and Maksim Fatin
Huawei, Computing Application Acceleration Technology Center

My HPC workload is running too slow…

▪ Workflow imbalance is one of the most typical issues limiting HPC
app performance and scaling

▪ How to measure imbalance? … on a big HPC cluster?

▪ How to minimize it?

Existing methods

▪ MPI Tracing
– Can capture overall time spent within MPI

functions

– Overtime visualization of time spent in
computing/MPI runtime

– No direct information from the MPI runtime
about wait(imbalance)/transfer distinguishing

▪ Classical hotspot-based performance
analysis
– Often misleading for MPI applications because

hotspots optimization might not actually cause
any speedup, but just increase the time ranks
spent on waiting for each other

• Scalasca
• Vampir
• IPM
• Paraver

Hardware Sampling based Hotspots

All the data captured within a single PMI is a sample (s), s ∈ S –
the set of all the samples captured during performance analysis
data collection with set of counters C={c1, c2 …, cp }, |C|=p.

Sample characteristics:
timestamp time(s),
counter identifier c(s)∈C,
counter value value(s)
set of attribute values ai (s)∈ Ai ,Ai ∈A,|A|= k, i ∈ 1..k.

Grouping value for sample

All the possible combinations of grouping values for grouping G and set of samples S

Aggregation of samples S by grouping G is

Metric:

Table H(S,G,M) with rows representing items of aggregation of samples sorted by the value m0 of

primary metric M0 in descending order is called hotspots.

Aggregation is an accumulation of sample values:

Grouping is one or more sample attributes:
Function Module CPU Time(s)

hmca_bcol_basesmuma_bcast_k... hmca_bcol_basesmuma.so 2838.6540

uct_dc_mlx5_iface_progress_ll libuct_ib.so.0.0.0 2795.7913

uct_mm_iface_progress libuct.so.0.0.0 2327.4292

opal_progress libopen-pal.so.40.30.1 2090.3369

Hotspots example

Program Activity Graph*

▪ Program Activity (PA) - non-overlapping individual job which has duration

– There is precedence relationship among the PAs – some PAs must be finished before
others can start

▪ Program Activity Graph is a directed, weighted, acyclic graph

– Vertices represent beginnings and endings of PAs associated with particular
communication events (e.g. send/receive) in a program

– Green edges represent the duration of PA

– Yellow edges are communication edges connecting endings and beginnings of PAs with
precedence relationship (the shortest is marked solid, others are dotted)

– The direction of PAG is from right to left (from the ending of app execution to begin)

time

* C.-Q. Yang, B. P. Miller. Critical Path Analysis for the Execution of Parallel and Distributed grams. 8th Int’l Conf. on Distributed Computing Systems. June 1988, San Jose, Calif., pp. 366-375.

Critical Path Analysis

▪ The Critical Path is the longest path in the graph

– As for PAG with communication edges Critical Path is the longest path with the longest
compute time (shortest communication time)

▪ There is no Imbalance Time (e.g. spinning) on the Critical Path

– Imbalance Time is the time rank spent on waiting other ranks when it finished computing
part earlier

▪ Shortening the time of Critical Path leads to the application Elapsed Time
reduction

– Performance tool should be able to provide information helping user to optimize
performance of activities on the Critical Path

time

Imbalance Time

Transfer Time

Known ways to find the Critical Path in DAG

▪ Shortest path algorithms with negative weights:
– Dijkstra’s algorithm, O(number of edges), sequential
– A* algorithm, efficiently operates under particular assumptions, sequential
– Delta-stepping and its modifications, parallel

▪ Critical Path analysis methodologies for the parallel programs:
– [C.-Q. Yang and B. P. Miller., 1988] with parallel version of longest path

algorithm based on [K. M. Chandy and J. Misra., 1982] – the first attempt to
apply CP for analysis of parallel programs

– An approach for automatic search of optimization suggestions using Critical
Path analysis of task graph built on top of GASPI [D. Grunewald and C.
Simmendinger, 2013] applications was considered in [C. Herold et al., 2017].

– One of the most recent papers [D. D. Nguyen and K. L. Karavanic, 2021]
underlines the importance of Critical Path for the efficient performance
analysis of the real-world HPC workloads. A new metric called “Workflow
Critical Path” is defined to characterize distributed workloads.

• https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
• https://en.wikipedia.org/wiki/A*_search_algorithm

https://en.wikipedia.org/wiki/Dijkstra's_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm

Proposed solution

▪ Combine critical path data with hardware sampling data in order to:
1. Represent the most critical information for the further optimization (any reduction

of Critical Path will lead to application elapsed time reduction).
2. Limit the amount of performance data analyzed to the size equal to performance

data size collected from a single MPI rank only due to Critical Path relates to just a
single rank at any moment of application execution time. This naturally supports any
scale since the amount of performance data to be analyzed is always limited and
depends on the application execution time only.

▪ We propose a highly scalable MPI calls replay based solution for
constructing the Critical Path with less than 5% of collection overhead and
less than 5% of application elapsed time spent on post-processing
independently on the number of ranks.

▪ Our approach has been tested on various real-world workloads and stays
within performance targets even on relatively high scale (available to us for
testing).

PAG construction rules

1. Graph vertex is a beginning or ending of MPI call on a particular rank.

2. Graph vertex gets weight, which equals to the elapsed time from the
beginning of the application execution to the beginning/ending of
corresponding MPI call.

3. Every vertex has only one outgoing edge. All the edges are directed from
the node having bigger weight to the one having smaller weight. Edge
representing communication time goes to the vertex with the highest
weight (rank with the latest further MPI call start time).

4. Everything executed outside of MPI call is treated as a useful compute job
(Program Activity).

5. Program Activity edges stay on the same rank.

time

MPI_Init MPI_Finalize

Critical Path finding algorithm

▪ Runtime (Data Collection):
1. Trace all the relevant MPI calls with arguments capture for enabling further replay

▪ Post-processing (done within MPI_Finalize call of the application):
2. Reconstruction of MPI communicators used by application.
3. Exchange timings information between P2P senders and receivers via MPI P2P calls replay

(from sender to receiver) and further collective-based exchange (from receiver to sender).
4. Graph edges creation, replay of MPI collective calls.
5. Finding Critical Path: retrieve time intervals of the path within the corresponding ranks via

traversing Program Activity Graph from the rank with the latest MPI_Finalize call time.

Lemma 1: There is only one path on the last step of the algorithm.

Proof: As every node has only one outgoing edge and graph is acyclic (graph
construction rule 3), there is only one path in the graph from every node representing
MPI_Finalize. Since only a single start node is chosen based on MPI_Finalize start
time, there is only one path found.

1. Data Collection

▪ PAG building requires tracing of all the MPI calls within every rank of
the target application
– Use PMPI and LD_PRELOAD mechanisms for tracing all the relevant MPI calls

and capture required arguments. Target app recompilation is not required.

– MPI calls related to communicators management are traced in order to
reconstruct communicators (step 2) for further replay of MPI calls on the
post-processing stage

– Synchronous and asynchronous MPI calls related to communication
between ranks are captured with:

▪ all the required arguments for further replay

▪ timing information (start/end time using MPI_Wtime).

3. Exchange timings information between
P2P senders and receivers

▪ Every P2P call has to retrieve a timing information about its pair call.
This happens in 2 stages:
1. Replay of P2P calls and Wait/Waitall calls related to asynchronous P2P calls.

Receivers get information about senders on this stage.

2. Use MPI collective calls in order to distribute information about receivers to
every sender.

Typical MPI send/receive pattern

4. Graph edges creation

▪ The primary edge creation rule is based on the PAG construction rule
3: consider k time intervals of related MPI calls 𝑏𝑖; 𝑒𝑖 , 𝑖 ∈ 1. . 𝑘, for
every 𝑒𝑖 create an edge (𝑒𝑖 → 𝑏) where ∃𝑗: 𝑏 = 𝑏𝑗 , 𝑒𝑖 > 𝑏𝑗 , ∄𝑙: 𝑏𝑙 >
𝑏𝑗 , 𝑗 ∈ 1. . 𝑘, 𝑙 ∈ 1. . 𝑘.

Creating graph edges
for P2P calls

Caching is involved

within P2P calls

4. Graph edges creation

Asynchronous P2P calls

Synchronous collective
calls

5. Finding the Critical Path

▪ In order to find the Critical Path we need to traverse through edges of the whole
PAG.

– According to Lemma 1, there is only one path from the latest node on every rank. So, the
starting traversal point is the latest MPI_Finalize call across all the ranks. Traversing is
done using P2P calls where ranks not on critical path are waiting on message receive, the
one on critical path is sending message when critical path migrates to another rank and
waits for further message receive:

Critical Path example

Algorithm features

▪ Efficiently utilizes all the available computing resources naturally
inheriting the cluster topology knowledge from the application.

▪ Every rank keeps and maintains information about its own graph
nodes and edges only.

▪ Post-processing elapsed time depends on the application elapsed
time and is supposed to be less than 5% of elapsed time of the
application due to the replay-based nature of the algorithm – MPI
calls from the application are replayed only without computing
portion of the application, the amount of data transferred within
replay has small fixed amount for every MPI call. The post-processing
overhead depends on the frequency of MPI calls done by the
application.

PMU Samples aggregation on Critical Path

▪ Hotspots on the Critical Path naturally highlight activities having the most
significant influence on the application elapsed time. Optimization of the
hotspots on Critical Path obviously leads to the reduction of application
elapsed time.

Hotspots on Critical Path

Quantum Espresso benchmark

Top Hotspots

Function Module CPU Time(s) Inst Retired CPI

hmca_bcol_basesmuma_bcast_k... hmca_bcol_basesmuma.so 13383.5000 93319394951143 0.3729

ucp_worker_progress libucp.so.0.0.0 12456.9659 69298900225456 0.4674

hmca_bcol_basesmuma_barrier... hmca_bcol_basesmuma.so 10216.3521 79180406179086 0.3355

uct_mm_iface_progress libuct.so.0.0.0 4788.1269 28096224988430 0.4431

zgemm_ pw.x 4519.1347 12829183732610 0.9159

Top Hotspots on MPI Critical Path

Function Module CPU Time(s) Inst Retired CPI

--

zgemm_ pw.x 15.1443 42899112983 0.9179

ztrsm_ pw.x 3.2306 7691043444 1.0921

dlaebz_ pw.x 2.8353 2478888508 2.9738

zher2k_ pw.x 2.7822 8033314443 0.9005

zgemv_ pw.x 2.1234 5357958074 1.0304

NAS Parallel benchmark (NPB) BT

Top Hotspots

Function Module CPU Time(s) Inst Retired CPI

--

uct_dc_mlx5_iface_progress_ll libuct_ib.so.0.0.0 295.3117 1400019640511 0.5484

binvcrhs_ bt.C.x 182.3859 862089470040 0.5501

compute_rhs_ bt.C.x 164.1930 372248709623 1.1468

x_solve_cell_ bt.C.x 137.2237 454555473911 0.7849

y_solve_cell_ bt.C.x 136.8946 516508431287 0.6891

Top Hotspots on MPI Critical Path

Function Module CPU Time(s) Inst Retired CPI

--

compute_rhs_ bt.C.x 0.2853 801341496 0.9257

binvcrhs_ bt.C.x 0.2664 1646724591 0.4206

x_solve_cell_ bt.C.x 0.2565 951072004 0.7013

z_solve_cell_ bt.C.x 0.2408 900313343 0.6953

y_solve_cell_ bt.C.x 0.2329 942058909 0.6428

Performance Evaluation

Nodes Ranks Problem size Elapsed time
(s)

Elapsed time under collector(s) Overhead Postprocesing MPI calls
s % s % Total Per rank

1 121 224x224x224 137.611 138.945 1.334 0.97 0.529 0.38 8,005,118 66,158

2 256 320x320x320 130.621 132.071 1.450 1.11 0.545 0.42 24,631,808 96,218

4 400 384x384x384 132.891 134.741 1.850 1.39 0.537 0.40 48,103,628 120,259

4 484 408x408x408 114.041 115.439 1.398 1.23 0.522 0.46 64,028,360 132,290

NPB BT

Nodes Ranks Problem size Elapsed time
(s)

Elapsed time under collector (s) Overhead Postprocessing MPI calls
s % s % Total Per rank

1 128 256x256x256 67.834 70.361 2.527 3.73 3.261 4.81 71,235,432 556,527
2 256 320x320x320 61.425 63.811 2.386 3.88 2.823 4.60 184,370,232 720,196
3 384 384x384x384 70.071 72.321 2.250 3.21 3.129 4.47 335,724,808 874,283
4 512 408x408x408 68.320 70.837 2.517 3.68 2.872 4.20 478,295,000 934,170

Nodes Ranks Problem size Elapsed time
(s)

Elapsed time under collector
(s)

Overhead Postprocessing MPI calls

s % s % Total Per rank

1 128 1024x512x512 120.074 122.522 2.448 2.04 0.044 0.04 899,008 7,024

2 256 1024x1024x512 122.572 124.886 2.314 1.89 0.046 0.04 1,977,536 7,725

3 384 1024x1024x768 121.861 124.084 2.223 1.82 0.048 0.04 2,912,448 7,585

4 512 1024x1024x1024 124.244 126.113 1.869 1.50 0.043 0.04 4,350,016 8,496

NPB LU

miniFE

Nodes Ranks Elapsed time (s) Elapsed time under
collector (s)

Overhead Postprocessing MPI calls Overhead per call (us)
s % s % Total Per rank

8 256 5992.799 6037.222 44.423 0.74 6.831 0.11 386,975,194 1,511,622 29.388

16 512 3032.759 3075.891 43.132 1.42 7.236 0.24 812,547,288 1,587,006 27.178

32 1024 2079.178 2125.290 46.112 2.22 7.254 0.35 1,859,041,028 1,815,470 25.399

48 1536 1210.573 1247.913 37.340 3.08 7.102 0.59 2,684,833,958 1,747,939 21.362

64 2048 1091.817 1127.626 35.809 3.28 7.447 0.68 3,833,675,393 1,871,912 19.129

WRF

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

64 128 192 256 320 384 448 512 576

T
im

e
(s

)

Ranks

Postprocessing NPB LU

Postprocessing NPB SP

Postprocessing miniFE

0,000

2,000

4,000

64 128 192 256 320 384 448 512 576

T
im

e
 (

s)

Ranks

Overhead NPB.LU

Overhead NPB.SP

Overhead miniFE

vs Scalasca

Benchmark NPB LU miniFE

Problem size 384x384x384 320x320x320 1024x512x512

Scale (nodes x ranks) 1x128 1x128 1x128

Elapsed time (s) 195.24 121.85 120.08

Under collection

Our tool 199.95 (+2.41%) 122.64 (+0.64%) 125.52 (+2.04%)

Scalasca 255.38 (+30.80%) 147.25 (+21.41%) Failure

Post- processing (s)

Our tool 3.29 (1.69%) 2.89 (2.37%) 0.044 (0.04%)

Scalasca Out of memory 86.45 (60.52%) Failure

Collected data size
Our tool 4.1GB 3.3GB 57MB

Scalasca 96GB 64 GB Failure

Conclusion

 We have created a novel scalable and robust approach for root causing MPI
Imbalance issues in the MPI applications in order to improve efficiency of MPI
parallel applications performance analysis.
 New algorithm for building Program Activity Graph and finding the Critical Path in the

Program Activity Graph of the MPI application has been developed, which scales well and
doesn’t require any complex operations on data collection.

 A novel approach of PMU data aggregation to the hotspots on Critical Path has been
proposed.

 It supports ideal analysis scalability due to the limitation of analyzed PMU data to the amount
of data collected from a single rank.

 The runtime and post-processing cost of the analysis is negligible which has been confirmed by
experiments involving real-world parallel workloads.

 The runtime overhead of the proposed approach stays within just 5% related to wrapping of all
the relevant MPI calls and capturing required data for further replay.

 Critical Path analysis overhead also stays within just 5% of application elapsed time and
doesn’t depend on the number of ranks.

 Overall, Critical Path analysis stays within 5% of runtime overhead which is much less than any
existing solution working on the real-world applications.

Backup

Performance Evaluation

▪ The results were collected on the clusters with 4 and 96 Huawei Taishan 2280v2
compute nodes:
• 2x64 core Hisilicon Kunpeng 920 CPU, 2.6GHz
• 256GBDRAM, DDR4
• Storage: PCI-e NVME SSDs
• Interconnect: NVIDIA® (Mellanox) Infiniband Connect X6 100Gb adapters, 100Gb switch
• Operating system: CentOS 8
• Compiler: gcc/gfortran 11.2
• MPI: OpenMPI 4.1.4

▪ Benchmarks used for tool performance characteristics evaluation:
• NAS Parallel Benchmark BT (NPB BT): solver for synthetic system of nonli-near partial different

equations using block tridiagonal algorithm
• NAS Parallel Benchmark LU (NPB LU): solver for synthetic system of nonli-near partial different

equations using Lower-Upper symmetric Gauss-Seidel algorithm
• MiniFE: sparse linear system solver using a simple un-preconditioned conju-gate-gradient algorithm
• WRF: Weather Research and Forecasting Model – a numerical weather prediction and atmospheric

simulation system

