
Eugeniy Kazakov1, Dmitry Efremenko2, 

Viacheslav Zemlyakov1, Jiexing Gao1

Russian Supercomputing 

Days

A time-parallel ordinary differential equation solver with 

an adaptive step size: performance assessment

1 Huawei Technologies Co., Ltd, Russian Research Institute, 

Moscow, Russia 
2 Remote Sensing Technology Institute (IMF), German 

Aerospace Center (DLR), Oberpfaffenhofen, Germany 



Content

2

• Motivation

• Classical parareal ODE algorithm

• Parallel ODE solvers with adaptive step

• Numerical results

• Summary



Motivation

3

• There is a need for speeding up the ODE solvers on large time domains 

(with fine resolution).

• In a view of cheap multicore CPUs, it is very tempting to design parallel 

ODE solvers

• parallelization across the time direction is challenging due to a causality 

principle, namely, the ODE solution later in time depends on the solution 

earlier in time.

• Nevertheless, in 1950s, Nievergelt proposed parallel-in-time ODE solver -

PARAREAL)

• The goals of the study are 

a. to assess the possible benefits of PARAREAL

b. to find some ways to improve PARAREAL



Parallel-in-time ODE solver

• Parareal is based on coarse and fine ODE solvers:

• The coarse solver provides initial points across the domain to the fine solver.

• Fine solvers are performed in parallel, while the coarse solver is sequential.

𝑈𝑛
0 – initial coarse integrator 

solution solution,

𝑈𝑛
𝑘 – current solution,

𝐺 𝑈𝑛−1
𝑘−1 – coarse integrator 

(e.g. Euler method),

F 𝑈𝑛−1
𝑘−1 – fine integrator (e.g. 

Runge-Kutta method),

k – iteration number,

n – solution point number. 4



Parareal

5

k is the number of iterations, 

M – number of parallel subdomains, 

WG, WF - the total computational fine and coarse solver times.

Theoretical speedup factor for of the Parareal algorithm:

S is large when WG/WF<<1 (which is a common assumption in papers about Parareal)



Iterations

6

• If the prediction of the fine solver is far from that of the coarse 

solver, then the whole solution is wrong and has to be 

corrected (empirically).

• E.g., in Gparareal: the correction is performed using the 

“history” of previous iterations involving Gaussian processes 

(a little improvement as compared to the classical Parareal)

• The corrections are not fail-safe -> for M subdomains, M-1 

iterations might be required -> no gain in performance



Ways to improve Parareal

7

• The majority of studies of Parareal are concerned with the 

performance of the fine solvers and the correction procedure, 

sticking to the Euler solver as the coarse one [1,2].

• In our examples, we did not find a case where this approach 

would be more efficient than a single-threaded ODE solver.

• A possible solution : improve the accuracy of the coarse 

solver -> minimize the number of iterations 

.[1] Arteaga, A., Ruprecht, D., Krause, R.: A stencil-based implementation of parareal in the C++ domain specific 

embedded language STELLA. (2014), https://arxiv.org/abs/1409.8563.

[2] Pentland, K., Tamborrino, M., Sullivan, T.J., Buchanan, J., Appel, L.C.: Gparareal: A time-parallel ODE solver 

using Gaussian process emulation. (2022), https://arxiv.org/abs/2201.13418.



Algorithm and implementation

8

Begin:

Setup input parameters.

MPI_Init:

Begin iteration cycle:

In master process:

Coarse solver iteration cycle:

Run G solver,

End coarse solver iteration cycle,

MPI_Send: obtained initial values another processes,

MPI_Recv: solutions of non-zero processes,

Error estimation.

In other processes:

MPI_Recv: initial value,

Run F solver,

MPI_Send: solution to 0 process.

End iteration cycle.

MPI_Finalize.

End

OpenMP implementation is considered in  Daniel Ruprech, Implementing Parareal – OpenMP or MPI? 

(2021), https://arxiv.org/abs/1509.06935v1.



Applying adaptive step

Solution after one iteration for Eq. (1):

(a) with the fix step coarse integrator;

(b) with the adaptive step coarse integrator.

(1)

6



Efficiency of Parareal
Solution after one and two iteration for Eq. (1), 1e7 points.

9

• Unlike in theoretical papers about Parareal, in real 

applications, iterations may nullify performance 

enhancement of Parareal;

• WG/WF ~ 1;

• Formula for S does not take into account overhead due 

to data transfer;

[1] Pentland, K., Tamborrino, M., Sullivan, T.J., Buchanan, J., Appel, L.C.: Gparareal: A time-parallel ODE solver 

using Gaussian process emulation. (2022), https://arxiv.org/abs/2201.13418.

[2] OpenMP implementation is considered in  Daniel Ruprech, Implementing Parareal – OpenMP or MPI? 

(2021), https://arxiv.org/abs/1509.06935v1

Number of 

CPUs
Speedup Implementation Ref.

16 2 C++ MPI Current work

16 2

MATLAB parfor +

Gaussian 

predictor

[1]

24 4
FORTRAN 

OpenMP/MPI
[2]



(a) Solutions for Eq. (2) obtained with Parareal on 32 CPUs and serial ode45 solver;

(b) Absolute errors of the Parareal solution.

(2)

10

Results for FitzHugh-Nagumo model



Results for FitzHugh-Nagumo model

(c) Average solution time for the serial ode45 solver and Parareal as a function of CPUs for 1e7 points;

(d) The speedup factor provided by Parareal as a function of points for 32 CPUs .

11



(a) Solutions obtained with Parareal on 32 CPUs and serial ode45 solver; 

(b) Absolute errors of the Parareal solution.

(3)

12

Solution of Rossler system (stiff ODE)



Conclusions

• For our implementation of Parareal, two-fold speedup is achieved on 16 CPUs;

• A classical implementation of Parareal algorithm does not lead to a significant 

gain in performance (given an optimized ODE solver as a reference solver);

• Parareal algorithm with an adaptive step coarse solver is more robust and 

requires less iterations than the classical Parareal algorithm. Gain in speed is 

larger than the loss in performance due to the adaptive step;

• The gain in performance is pronounced for sufficiently large number of points -> 

a subject for fine tuning of data transfer between the processes;

• In the view of the overhead due to data transfer, the efficiency of the coarse 

solver is just as important as that of the fine solver.

15



Thank you.



Solution time

Number of points

Serial solver

Parallel solver

N0

Performance assessment

14

Schematic comparison solution time of 

computational load, number of points.



Matrix Riccati equation

13

Problems

Solution scalable and matrix equations


