
RICSR: A Modified CSR Format for Storing
Sparse Matrices

Roman Kuprii1,2, Boris Krasnopolsky1 and Konstantin Zhukov2

roman.kupry@gmail.com

1Institute of Mechanics, Lomonosov Moscow State University,
2Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State

University

Supported by Russian Science Foundation Grant № 18-71-10075

Russian Supercomputing Days
September 26-27, 2022

mailto:roman.kupry@gmail.com

Motivation

● Solving sparse systems of linear
algebraic equations (SLAEs) is among
the common tasks when modeling
mathematical physics problems

● Solving SLAEs occupies a significant
part of all calculations

● Iterative methods are often used to
solve SLAEs

2/18

R. Röhrig, S. Jakirlić, C. Tropea, Int. J. Heat
 Fluid Flow, 2015

https://doi.org/10.1016/j.ijheatfluidflow.2015.07.011
https://doi.org/10.1016/j.ijheatfluidflow.2015.07.011

Introduction

● A significant part of the time is spent
on the execution of the operation of
multiplying a sparse matrix by a
vector (SpMV)

● SpMV is characterized by low
computational intensity

● The efficiency of the algorithm
depends on the memory bandwidth
of the compute system

● One of the options for improving the
efficiency of calculations is to reduce
data traffic

3/18
conjugate gradient algorithm

4/18

Sparse matrix storage formats

● A sparse matrix is a matrix with only a few nonzero elements in each row

● To store sparse matrices, special formats are developed, where information
about nonzero elements is stored in a special way

● Two widely used basic formats: CSR and ELL

● CSR format is simple, universal, but in many cases not optimal

● Lots of advanced modifications (e.g. CSR5, ESB, SELL-C-σ and many other)
● difficult to implement
● change the original matrix
● take a long time to convert

● In many libraries of numerical methods, the CSR (Compressed Sparse Row)
format is used as the main format

● Libraries: hypre, PETSc, AMGCL, Intel MKL (Math Kernel Library), etc

● Simple lightweight modification of the CSR format: RICSR (Row Incremental
CSR)

● aims to reduce the amount of data to store column numbers
● easy to implement
● does not require changes to the original matrix
● does not take much time to convert
● can be used together with CSR format

Sparse matrix storage formats

5/18

CSR format

● Three arrays are used:

● DOUBLE Val[nnz] : {a0,0, a0,3, a1,1, a1,4, a1,5, a2,2,
a3,3, a4,0, a4,2, a4,4, a5,2, a5,5}

● INT Row[n+1] : {0, 2, 5, 6, 7, 10, 12} —
information about the number of nonzero
elements in rows

● INT Col[nnz] : {0, 3 | 1, 4, 5 | 2 | 3 | 0, 2, 4 | 2, 5}
— column numbers of nonzero elements

● The sizeof{INT} in the Col and Row – determined
by the matrix size and the number of nonzero
elements

6/18

RICSR format

● The Col[nnz] array is split into two arrays:
Col_0[n] and Col_i[nnz-n]

● DOUBLE Val[nnz] : {a0,0, a0,3, a1,1, a1,4, a1,5, a2,2,
a3,3, a4,0, a4,2, a4,4, a5,2, a5,5}

● INT Row[n+1] : {0, 2, 5, 6, 7, 10, 12}

● INT Col_0[n] : {0, 1, 2, 3, 0, 2} - column
numbers of first nonzero elements in rows

● INT Col_i[nnz-n] : {3 | 3, 4 | | | 2, 4 | 3} —
offsets from the first element of the string

7/18

3

3

4

2 4

3

RICSR format

● Reducing memory consumption is possible because:

● The size of integer data type used in Col array in CSR is determined by
the matrix size

● The size of integer data type used in Col_i array in RICSR is determined
by the maximum of the offsets between the first and last element in the
row

● Applicability criteria
● 4 bytes for storing column numbers in Col array
● 1 or 2 byte for storing offsets on Col_i array

● Since the SpMV operation is limited by memory bandwidth, reducing the
memory consumption for the array Col gives a gain despite the additional
arithmetic operation

8/18

for (i = 0; i < n; i++) {
 y[i] = 0;
 for (j = Row[i]; j < Row[i+1]; j++)
 y[i] += x[Col[j]] * Val[j];
}

for (i = 0; i < n; i++) {
 y[i] = x[Col_0[i]] * Val[Row[i]];
 for (j = Row[i]+1; j < Row[i+1]; j++)
 y[i] += x[Col_0[i] + Col_i[j-i-1]]
 * Val[j];
}

SpMV implementation
● The key feature of the proposed format is its simplicity and compatibility with

the original CSR

● The algorithm for multiplying a sparse matrix by a vector does not undergo
significant changes:

SpMV operation for CSR format:

SpMV operation for RICSR format:

9/18

Theoretical estimates
● The theoretical performance gain estimates for the matrix-vector

multiplication are proposed based on the amount of memory traffic

10/18

Col_i array
bitness C P

32
P

64

1 (int8) 15 1.28 1.16

2 (int16) 15 1.18 1.1

4 (int32) 15 1 1

Data reduction when performing an SpMV operation with
single (P32) and double (P64) precision floating point data

● С = nonzeros / nrows

● P32 – CSR to RICSR memory
consumption, single
precision floating point data

● P64 – CSR to RICSR memory
consumption, double
precision floating point data

Implementation in the XAMG library
● XAMG library – designed to solve large sparse SLAEs, including those with

many right-hand sides

● It contains a set of numerical methods including the algebraic multigrid
method, Krylov subspace methods and other.

● The library provides hierarchical three-level parallelization with a hybrid
MPI+POSIX shared memory parallel programming model

● The library contains several specific optimizations like vectorization, data
alignment, and other

● https://gitlab.com/xamg/xamg

● Krasnopolsky, B., Medvedev, A.: XAMG: a library for solving linear systems with multiple rig
ht-hand side vectors. SoftwareX 14, 100695 (2021)

11/18

https://gitlab.com/xamg/xamg
https://gitlab.com/xamg/xamg
https://doi.org/10.1016/j.softx.2021.100695
https://doi.org/10.1016/j.softx.2021.100695

● A subset of matrices from the SuiteSparse Matrix Collection ranging from
500K to 2M rows was used

● Two computing systems:
- Desktop with 6-core Intel Core i7-8700 and 2-channel DDR4, 2667 MHz

- Cluster node with 14-core Intel Haswell-EP E5-2697v3 and 6-channel DDR4,
2400 MHz

● Testing scenario:
- SpMV: XAMG vs Intel MKL
- SpMV: XAMG, CSR vs RICSR
- Linear Solvers: XAMG, CSR vs RICSR

Testing methodology

12/18

Comparison with MKL

13/18

SpMV: XAMG CSR vs MKL CSR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.6

0.7

0.8

0.9

1.0

1.1

matrix id

M
K

L
to

 X
A

M
G

 e
xe

cu
tio

n
tim

e

Most of the cases demonstrate comparable results within the range of +- 5%

SpMV: single and double precision

14/18

SpMV: XAMG CSR vs XAMG RICSR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.9

1.0

1.1

1.2

1.3

1.4

Fp32: CSR/RICSR Fp64: CSR/RICSR applicability criterion

matrix id

C
S

R
 to

 R
IC

S
R

 e
xe

cu
tio

n
tim

e

Average acceleration for matrices that meet the applicability
criteria: 17% and 28% for double and single precision calculations,

respectively

PBiCGStab + Jacobi

15/18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.9

1.0

1.1

1.2

1.3

1.4

Fp32: CSR/RICSR Fp64: CSR/RICSR applicability criterion

matrix id

C
S

R
 to

 R
IC

S
R

 e
xe

cu
tio

n
tim

e

Average acceleration for matrices that meet the applicability
criteria: 15% and 25% for double and single precision calculations

BiCGStab solver with Jacobi preconditioner: XAMG CSR vs XAMG RICSR

PBiCGStab + Multigrid

16/18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.9

1.0

1.1

1.2

1.3

1.4
Fp32: CSR/RICSR Fp64: CSR/RICSR applicability criterion

matrix id

C
S

R
 to

 R
IC

S
R

 e
xe

cu
tio

n
tim

e

Average acceleration for matrices that meet the applicability
criteria: 14% and 24% for double and single precision calculations

BiCGStab solver with Multigrid preconditioner: XAMG CSR vs XAMG RICSR

Conclusions

● A lightweight modification of RICSR is proposed, aimed at reducing the amount
of data for storing the matrix

● Theoretical estimates of the effectiveness of SpMV with the RICSR format are
proposed

● A simple criterion for the applicability of the RICSR format is formulated based
on the maximum distance between the extreme nonzero elements in each row
of the matrix

● Proposed format is implemented in XAMG library and thoroughly tested

● For matrices that meet the applicability criteria, the RICSR format provides a
speedup of 15% to 25% for both SpMV operation and linear solvers; for the rest
provides performance comparable to CSR

17/18

Future plans

● To increase the scope of applicability of the RICSR format, it is expected to
use graph algorithms for reducing matrix bandwidth

● Support for the use of graphics accelerators when using the proposed
modification

● Improving the presented modification by using increments between
successive elements in each line

● Cache-blocking optimizations

18/18

