Russian Supercomputing Days September 26-27, 2022

RICSR: A Modified CSR Format for Storing Sparse Matrices

<u>Roman Kuprii^{1,2}</u>, Boris Krasnopolsky¹ and Konstantin Zhukov² <u>roman.kupry@gmail.com</u>

¹Institute of Mechanics, Lomonosov Moscow State University, ²Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

Supported by Russian Science Foundation Grant № 18-71-10075

Motivation

- Solving sparse systems of linear algebraic equations (SLAEs) is among the common tasks when modeling mathematical physics problems
- Solving SLAEs occupies a significant part of all calculations
- Iterative methods are often used to solve SLAEs

R. Röhrig, S. Jakirlić, C. Tropea, Int. J. Heat Fluid Flow, 2015

Introduction

- A significant part of the time is spent on the execution of the operation of multiplying a sparse matrix by a vector (SpMV)
- SpMV is characterized by <u>low</u> <u>computational intensity</u>
- The efficiency of the algorithm depends on <u>the memory bandwidth</u> <u>of the compute system</u>
- One of the options for improving the efficiency of calculations is to reduce data traffic

$$\begin{aligned} \mathbf{r}_{0} &:= \mathbf{b} - \mathbf{A}\mathbf{x}_{0} \\ \mathbf{p}_{0} &:= \mathbf{r}_{0} \\ k &:= 0 \\ \text{repeat} \end{aligned}$$

$$\alpha_{k} &:= \frac{\mathbf{r}_{k}^{\mathsf{T}}\mathbf{r}_{k}}{\mathbf{p}_{k}^{\mathsf{T}}\mathbf{A}\mathbf{p}_{k}} \\ \mathbf{x}_{k+1} &:= \mathbf{x}_{k} + \alpha_{k}\mathbf{p}_{k} \\ \mathbf{r}_{k+1} &:= \mathbf{r}_{k} - \alpha_{k}\mathbf{A}\mathbf{p}_{k} \\ \text{if } r_{k+1} &\text{ is sufficiently small, then exit loop} \\ \beta_{k} &:= \frac{\mathbf{r}_{k+1}^{\mathsf{T}}\mathbf{r}_{k+1}}{\mathbf{r}_{k}^{\mathsf{T}}\mathbf{r}_{k}} \\ \mathbf{p}_{k+1} &:= \mathbf{r}_{k+1} + \beta_{k}\mathbf{p}_{k} \\ k &:= k+1 \\ \text{end repeat} \\ \text{The result is } \mathbf{x}_{k+1} \end{aligned}$$

conjugate gradient algorithm

Sparse matrix storage formats

- A sparse matrix is a matrix with only a few nonzero elements in each row
- To store sparse matrices, special formats are developed, where information about nonzero elements is stored in a special way
- Two widely used basic formats: CSR and ELL
- CSR format is simple, universal, but in many cases not optimal
- Lots of advanced modifications (e.g. CSR5, ESB, SELL-C- σ and many other)
 - difficult to implement
 - change the original matrix
 - take a long time to convert

Sparse matrix storage formats

- In many libraries of numerical methods, the CSR (Compressed Sparse Row) format is used as the main format
- Libraries: hypre, PETSc, AMGCL, Intel MKL (Math Kernel Library), etc
- Simple lightweight modification of the CSR format: RICSR (Row Incremental CSR)
 - aims to reduce the amount of data to store column numbers
 - easy to implement
 - does not require changes to the original matrix
 - does not take much time to convert
 - can be used together with CSR format

CSR format

- Three arrays are used:
- DOUBLE **Val[nnz]** : { $a_{0,0}$, $a_{0,3}$, $a_{1,1}$, $a_{1,4}$, $a_{1,5}$, $a_{2,2}$, $a_{3,3}$, $a_{4,0}$, $a_{4,2}$, $a_{4,4}$, $a_{5,2}$, $a_{5,5}$ }
- INT Row[n+1]: {0, 2, 5, 6, 7, 10, 12} information about the number of nonzero elements in rows
- INT **Col[nnz]** : {0, 3 | 1, 4, 5 | 2 | 3 | 0, 2, 4 | 2, 5} — column numbers of nonzero elements
- The sizeof{INT} in the Col and Row determined by <u>the matrix size</u> and <u>the number of nonzero</u> <u>elements</u>

$a_{0,0}$			$a_{0,3}$		
	$a_{1,1}$			$a_{1,4}$	$a_{1,5}$
		$a_{2,2}$			
			$a_{3,3}$		
$a_{4,0}$		$a_{4,2}$		$a_{4,4}$	
		$a_{5,2}$			$a_{5,5}$

n = 6, nnz = 12

RICSR format

- The Col[nnz] array is split into two arrays: Col_0[n] and Col_i[nnz-n]
- DOUBLE Val[nnz]: {a_{0,0}, a_{0,3}, a_{1,1}, a_{1,4}, a_{1,5}, a_{2,2}, a_{3,3}, a_{4,0}, a_{4,2}, a_{4,4}, a_{5,2}, a_{5,5}}
- INT **Row[n+1]** : {0, 2, 5, 6, 7, 10, 12}
- INT Col_0[n] : {0, 1, 2, 3, 0, 2} column numbers of first nonzero elements in rows
- INT **Col_i[nnz-n]** : {3 | 3, 4 | | | 2, 4 | 3} offsets from the first element of the string

RICSR format

- Reducing memory consumption is possible because:
 - The size of integer data type used in Col array in CSR is determined by <u>the matrix size</u>
 - The size of integer data type used in Col_i array in RICSR is determined by <u>the maximum of the offsets between the first and last element in the</u> <u>row</u>
- Applicability criteria
 - 4 bytes for storing column numbers in **Col** array
 - 1 or 2 byte for storing offsets on Col_i array
- Since the SpMV operation is limited by memory bandwidth, reducing the memory consumption for the array Col gives a gain despite the additional arithmetic operation

SpMV implementation

- The key feature of the proposed format is its simplicity and compatibility with the original CSR
- The algorithm for multiplying a sparse matrix by a vector does not undergo significant changes:

SpMV operation for CSR format:

SpMV operation for RICSR format:

```
for (i = 0; i < n; i++) {
   y[i] = 0;
   for (j = Row[i]; j < Row[i+1]; j++)
    y[i] += x[Col[j]] * Val[j];
}</pre>
```

Theoretical estimates

 The theoretical performance gain estimates for the matrix-vector multiplication are proposed based on the amount of memory traffic

Col_i array bitness	С	P ₃₂	P ₆₄
1 (int8)	15	1.28	1.16
2 (int16)	15	1.18	1.1
4 (int32)	15	1	1

• C = nonzeros / nrows

- P₃₂ CSR to RICSR memory consumption, single precision floating point data
- Data reduction when performing an SpMV operation with single (P_{32}) and double (P_{64}) precision floating point data

$$P_{64} = \frac{10 \cdot C + 6}{9 \cdot C + 7} \qquad P_{32} = \frac{6 \cdot C + 4}{5 \cdot C + 5}$$

 P₆₄ – CSR to RICSR memory consumption, double precision floating point data

Implementation in the XAMG library

- XAMG library designed to solve large sparse SLAEs, including those with many right-hand sides
- It contains a set of numerical methods including the algebraic multigrid method, Krylov subspace methods and other.
- The library provides hierarchical three-level parallelization with a hybrid MPI+POSIX shared memory parallel programming model
- The library contains several specific optimizations like vectorization, data alignment, and other
- <u>https://gitlab.com/xamg/xamg</u>
- <u>Krasnopolsky, B., Medvedev, A.: XAMG: a library for solving linear systems with multiple rig</u> <u>ht-hand side vectors. SoftwareX 14, 100695 (2021)</u>

Testing methodology

- A subset of matrices from the SuiteSparse Matrix Collection ranging from 500K to 2M rows was used
- Two computing systems:
 - Desktop with 6-core Intel Core i7-8700 and 2-channel DDR4, 2667 MHz
 - Cluster node with 14-core Intel Haswell-EP E5-2697v3 and 6-channel DDR4, 2400 MHz
- Testing scenario:
 - SpMV: XAMG vs Intel MKL
 - SpMV: XAMG, CSR vs RICSR
 - Linear Solvers: XAMG, CSR vs RICSR

Comparison with MKL

SpMV: XAMG CSR vs MKL CSR

Most of the cases demonstrate comparable results within the range of +- 5%

SpMV: single and double precision

SpMV: XAMG CSR vs XAMG RICSR

Average acceleration for matrices that meet the applicability criteria: 17% and 28% for double and single precision calculations, respectively 1

14/18

PBiCGStab + Jacobi

BiCGStab solver with Jacobi preconditioner: XAMG CSR vs XAMG RICSR

Average acceleration for matrices that meet the applicability criteria: 15% and 25% for double and single precision calculations

PBiCGStab + Multigrid

BiCGStab solver with Multigrid preconditioner: XAMG CSR vs XAMG RICSR

Average acceleration for matrices that meet the applicability criteria: 14% and 24% for double and single precision calculations

Conclusions

- A lightweight modification of RICSR is proposed, aimed at reducing the amount of data for storing the matrix
- Theoretical estimates of the effectiveness of SpMV with the RICSR format are proposed
- A simple criterion for the applicability of the RICSR format is formulated based on the maximum distance between the extreme nonzero elements in each row of the matrix
- Proposed format is implemented in XAMG library and thoroughly tested
- For matrices that meet the applicability criteria, the RICSR format provides a speedup of 15% to 25% for both SpMV operation and linear solvers; for the rest provides performance comparable to CSR

- To increase the scope of applicability of the RICSR format, it is expected to use graph algorithms for reducing matrix bandwidth
- Support for the use of graphics accelerators when using the proposed modification
- Improving the presented modification by using increments between successive elements in each line
- Cache-blocking optimizations