Information Entropy Initialized Concrete Autoencoder for Optimal Sensor Placement and Reconstruction of Geophysical Fields

Nikita A. Turko¹, Alexander A. Lobashev², Konstantim V. Ushakov^{3,1}, Maxim N. Kaurkin³, and Rashit A. Ibrayev^{3,4}

¹Moscow Institute of Physics and Technology
 ²Skolkovo Institute of Science and Technology
 ³Shirshov Institute of Oceanology, Russian Academy of Sciences
 ⁴Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

RuSCDays22

Nukuto /	\	10 0	+ -
	• • • • • •		

Overview

1. Introduction

2. Motivation

- 3. Statistical approach
- 4. Baselines
- 5. Data

6. Results

7. Conclusion

Nikita .	Α. Τ	urko,	et al

< ∃⇒

< 4³ ► <

э

Introduction

Mildeta	лт		10	ot.	-
INIKILA .	м. і	un	κu,	eι	aı

æ

< □ > < □ > < □ > < □ > < □ >

Introduction

Operational ocean forecasting based on:

- Observation data
- Ocean circulation model
- Large CPU cluster

Figure: Example of ocean speed forecast

Nikita A. Turko, et al

model.ocean.ru

→ ∃ →

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

Introduction

Figure: Locations of ARGO drifters, measuring temperature and salinity profiles

< □ > < □ > < □ > < □ > < □ > < □ >

Motivation

Nukito /	\ I.ur	ko et a	
		NU. EL A	

æ

< □ > < □ > < □ > < □ > < □ >

Motivation

- Optimize ocean forecast operational systems
- Find locations to place new sensors
 - ► To select k ∈ [k_{min}, k_{max}] sensors from n grid nodes search space grows exponentially as ∑_{k=k_{min}^{k_{max}} C_n^k</sub>}
 - Direct combinatorial search is impossible

- Most of common approximate methods use the singular value decomposition (SVD) which scales as O(n³) or O(n²) in different implementations.
- They cannot be applied to large grids of size 1440x720 ≈ 10⁶ (0.25°x0.25°)

Statistical approach

э

イロト イボト イヨト イヨト

Statistical approach

- 1 Physical field as random variable realization
- 2 Informational entropy calculation
- 3 Proposition of optimal sensor locations
- 4 Sensor coordinates optimisation

Estimating uncertainty of a physical field Idea:

Place sensors in locations where a physical field has high uncertainty

Figure: Example of patches extracted from sea the surface temperature anomaly field. Indices $1, 2, \ldots, n$ correspond to patches takes in the same spatial location at different time moments

Informational entropy

 Uncertainty of a physical field could be estimated using the information entropy

The informational entropy of the physical field as a function of spatial coordinates x, y can be estimated as:

$$H(x,y) = -\int \mathbb{P}(\xi|x,y) \log \mathbb{P}(\xi|x,y) d\xi$$

= $-\frac{1}{N} \sum_{i=1}^{N} \log \mathbb{P}(\xi_i|x,y), \ \xi_i \sim \mathbb{P}(\xi_i|x,y)$ (1)

 $\boldsymbol{\xi}$ - values of the physical field, taken along the temporal dimension

- 4 回 ト 4 三 ト 4 三 ト

Density estimation via autoregressive generative modeling

Conditional PixelCNN

Suppose our set of physical fields is encoded as a set of $L \times L$ images or patches s_i cropped from the domain of interest \mathcal{D} , each of which is labeled with spatial coordinates of the patch center $\mathbf{r} = \{r_1, \ldots, r_K\} \in \mathcal{D}$

$$\mathcal{S}^{(\mathbf{r}_i \in \mathcal{D})} = \{ \mathbf{s}_1^{\mathbf{r}_1}, \dots, \mathbf{s}_N^{\mathbf{r}_N} \}.$$
⁽²⁾

Joint density of all pixels could be expanded as a product of conditional densities

$$\mathbb{P}(\boldsymbol{s}^{\mathbf{r}}|\mathbf{r}) = \prod_{i=1}^{L \times L} \mathbb{P}([\boldsymbol{s}^{\mathbf{r}}]_i | [\boldsymbol{s}^{\mathbf{r}}]_1, \dots, [\boldsymbol{s}^{\mathbf{r}}]_{i-1}, \mathbf{r}),$$
(3)

where $[s^r]_i$ stands for the i-th pixel of the image s^r with respect to the chosen ordering

イロト 不得 トイヨト イヨト 二日

Conditional PixelCNN

The network is trained on the dataset $S^{(r_i \in D)}$ maximizing probability of observed physical fields or equivalently by minimizing negative log-likelihood

$$L(\theta) = -\sum_{i=1}^{N} \log \mathbb{P}_{\theta}(s_{i}^{\mathbf{r}_{i}} | \mathbf{r}_{i}), \qquad (4)$$

where θ is the vector of parameters of Conditional PixelCNN. Then we compute entropy as

$$H(\mathbf{r}) = -\mathbb{E}_{s} \log \mathbb{P}_{\theta}(s|\mathbf{r}) = -\frac{1}{\#\{\mathbf{r}^{i} : |\mathbf{r}^{i} - \mathbf{r}| < \varepsilon\}} \sum_{|\mathbf{r}^{i} - \mathbf{r}| < \varepsilon} \log \mathbb{P}_{\theta}(s_{i}^{\mathbf{r}_{i}}|\mathbf{r}) \quad (5)$$

Proposed optimal sensor locations

Computed information entropy field can be used to propose optimal sensor locations by sampling from the distribution

$$\mathbb{P}(\mathbf{r}) = \frac{e^{\frac{1}{\tau}H(\mathbf{r})}}{\int_{\mathcal{D}} e^{\frac{1}{\tau}H(\mathbf{r})}d\mathbf{r}}$$
(6)

where we set hyperparameter $\tau=$ 0.2 for the entropy field measured in nats per computational grid cell

Concrete Autoencoder

Minimizing the loss function

$$\mathcal{L}_{G} = \mathbb{E}_{S_{\text{full}}} ||G(S_{\text{full}} \cdot \text{mask}, w) - S_{\text{full}}||_{L_{2}} + \lambda \cdot \mathbb{E}|\text{mask}|$$
(7)

where the function G takes as input the physical field S_{full} in the entire simulation area, multiplies it component by the binary mask and tries to restore the original field

< □ > < □ > < □ > < □ > < □ > < □ >

Concrete Autoencoder with Least Square GAN loss

$$\mathcal{L}_{\mathcal{G}} = \lambda_1 \mathcal{L}_{\mathsf{LSGAN}} + \lambda_2 \mathcal{L}_{\mathsf{pixel-wise}} + \lambda_3 \mathcal{L}_{\mathsf{sensors}}$$

where we use $\lambda_1 = 10^{-4}$, $\lambda_2 = 1$ and λ_3 dynamically changes during training from 0 to 1.

We add adversarial term with a discriminator D which tries to distinguish real and reconstructed physical fields:

$$\mathcal{L}_{\mathsf{LSGAN}} = \mathsf{MSE}(D(G(\hat{M})), \mathbb{I}) \equiv ||D(G(\hat{M})) - \mathbb{I}||_{L_2}$$

$$\mathcal{L}_{\mathsf{pixel-wise}} = \mathbb{E}_{S_{\mathsf{full}}} || G(S_{\mathsf{full}} \cdot \mathsf{mask}, w) - S_{\mathsf{full}} ||_{L_2}$$

$$\mathcal{L}_{\mathsf{sensors}} = \mathbb{E} |\mathsf{mask}|$$

э

イロト イヨト イヨト ・

(8)

Baselines

Nikita A	A Tur	ko	et al
i viikitea /	••••••••	πο,	ct a

2

<ロト < 四ト < 三ト < 三ト

Baselines

Climate

$$S^{climate}(i,j,d) = \frac{1}{N^{years}} \sum_{y=1}^{N^{years}} S(i,j,y,d)$$
(9)

where S(i, j, y, d) - the value of physical field with coordinates (i, j) at day number $d = \{1, 2, ..., 365\}$ in year y from train set, N^{years} - number of years with day d in train set

PCA-QR

Principal Component Analysis (Proper Orthogonal Decomposition or the method of Empirical Orthogonal Functions) with pivoted QR decomposition

イロト イヨト イヨト ・

Data

Nikito /	∖ Tur	ko i	at al
ININILa r	n. rur	κυ, ι	st ai

3

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Experimental data

Global coupled ocean-ice model INMIO Compass-CICE-ERA5 with resolution 0.25×0.25 , 17 model years from 2004 to 2020

Figure: Temperature at 3 m

		_		
NUMBER	~ .	11840	ot al	
INIKILA	А. I	III KO.	et at	

Results

Nikita /	4.Τ	Turko.	et	al

3

<ロト < 四ト < 三ト < 三ト

Approximation of informational entropy

Figure: Smoothed ensemble mean information entropy of geophysical fields: temperature at (a) 3 meter and (b) 45 m depth; salinity at (c) 3 meter and (d) 45 m depth

(4) (日本)

Initialised mask

Figure: Proposed initial sensor locations based on Information entropy field for temperature at 45m depth

< □ > < 同 > < 回 > < 回 >

Optimizing the mask, 30 epochs

Figure: Proposed initial sensor locations based on Information entropy field for temperature at 45m depth, after 30 epochs

Optimizing the mask, 60 epochs

Figure: Proposed initial sensor locations based on Information entropy field for temperature at 45m depth, after 60 epochs

Optimizing the mask, 90 epochs

Figure: Proposed initial sensor locations based on Information entropy field for temperature at 45m depth, after 90 epochs

Optimizing the mask, 180 epochs

Figure: Proposed initial sensor locations based on Information entropy field for temperature at 45m depth, after 180 epochs

Reconstructed field

Figure: Temperature at 45.0 m depth, 2017-08-07

Nukuto /	\	10 0	+ -
INIKILA A	 1111 	ко. е	. a.

э

イロン イヨン イヨン

Spatial distribution of reconstruction error

$$Bias(i,j) = \frac{1}{\#\{\tau \in TestSet\}} \sum_{\tau \in TestSet} (S^{recon}(i,j,\tau) - S^{ref}(i,j,\tau)) \quad (10)$$

$$RMSE(i,j) = \sqrt{\frac{1}{\#\{\tau \in TestSet\}}} \sum_{\tau \in TestSet} (S^{recon}(i,j,\tau) - S^{ref}(i,j,\tau))^2$$
(11)

- ∢ ⊒ →

æ

Spatial distribution of reconstruction error

Figure: Bias/RMSE temperature reconstruction at depth 45m

< □ > < □ > < □ > < □ > < □ > < □ >

Error on all test set

$$Bias(\tau) = \frac{1}{N^{i}} \frac{1}{N^{i}} \sum_{i=1}^{N^{i}} \sum_{j=1}^{N^{j}} (S^{recon}(i, j, \tau) - S^{ref}(i, j, \tau))$$
(12)

$$RMSE(\tau) = \sqrt{\frac{1}{N^{i}} \frac{1}{N^{i}} \sum_{i=1}^{N^{i}} \sum_{j=1}^{N^{j}} (S^{recon}(i, j, \tau) - S^{ref}(i, j, \tau))^{2}}$$
(13)

3

<ロト < 四ト < 三ト < 三ト

Error on all test set

Figure: Temperature field reconstruction accuracy against original model data

イロト イヨト イヨト イヨト

Test set reconstruction errors

Temperature 3m				
Method	Number of sensors	MED(Bias)	MED(RMSE)	
Climate	0	-0.19	0.98	
PCA with QR	77	0.13	1.03	
Concrete Autoencoder	77	-0.07	0.73	
	Temperature 45m			
Method	Number of sensors	MED(Bias)	MED(RMSE)	
Climate	0	-0.09	0.88	
PCA with QR	72	0.11	1.10	
Concrete Autoencoder	72	-0.05	0.83	
Concrete Autoencoder LSGAN	42	0.07	0.73	
	Salinity 3m			
Method	Number of sensors	MED(Bias)	MED(RMSE)	
Climate	0	0.58	0.84	
PCA with QR	57	-0.03	0.66	
Concrete Autoencoder	57	0.05	0.53	
	Salinity 45m			
Method	Number of sensors	MED(Bias)	MED(RMSE)	
Climate	0	0.59	0.72	
PCA with QR	61	0.02	0.30	
Concrete Autoencoder	61	0.26	0.41	

(日) (四) (日) (日) (日)

æ

Conclusion

	· -		
Nukita	// Lur	ko et a	
ININICA		NO. EL a	

2

< □ > < □ > < □ > < □ > < □ >

Conclusion

- Proposed a method for optimal sensor placement and reconstruction of geophysical fields
- Proposed method outperforms baselines
- The addition of LSGAN loss improves reconstruction accuracy

< A > <

Thank you for attention!

э

(日) (四) (日) (日) (日)