
www.huawei.com

Security Level: 

HUAWEI TECHNOLOGIES CO., LTD.

Study of scheduling approaches for 
batch processing in Big Data cluster

Ilya Timokhin – is.timokhin@hse.ru (Higher School of Economics),
Aleksey Teplov – aleksey.teplov@huawei.com (Advanced Software 
Technologies Laboratory of Huawei Moscow Research Center)



2/17

Background

• Scheduling and resource allocation for the tasks are basic operations for 
distributed systems task execution with typical goal to increase resource 
utilization rate;

• The main concept of the scheduling approach is to spread processing tasks 
between available hardware resources and define the execution order;

• Depending on the application usage scenario and goals processing strategies 
can also vary and use different approaches to schedule tasks and allocated 
resources for internal logic;

• Different scheduling goals require different metrics optimizations that reflect 
how efficient scheduling approach is.



3/17

Our framework for Big Data batch computations

SQL query -
> Client

SQL parser -
> execution 

plan
Locality 

Scheduler
Spawn MPI 

Executor
Thrift 

context obj
MPI 

Runtime
Thrift context 

obj

MPI_COMM_WORLD (1)

MPI_COMM_WORLD (0)

MPI_Init

MPI_Finalize

MPI_Init

MPI_Finalize

…

MPI_Comm_spawn

MPI_Init

MPI_Finalize

MPI_COMM_WORLD (2)

mpirun –H node1:1 ./a.out

./c.out
./b.out

Research part

•This framework combines MPI
distributed approach with high-
performance APIs to provide fast
batch calculations.
•It use Thrift to provide SQL context
and HDFS to store the data;
•It supports client/executor/SQL
parser modules for simultaneously
batch processing;
•But the problem of data location in
HDFS and optimal number of
workers for MPI batch is still open!



4/17

Data locality principle
Data movement is costly operation that is better to avoid in distributed systems; 
Hadoop-like data storage provide computations and data on the same 
distributed HQ cluster.

1. Data-to-blocks: the whole system is designed to store incredibly large files 
(>10GB) across different machines (nodes) in a cluster. HDFS stores and split 
each file as a sequential set of blocks;

2. Computing-to-data: we should bring the computing to the data instead 
bringing the data to the computing as another file storages;

3. Fault tolerance: If any node get down the data continues processing in the 
other copies (replications) and the part of failing computations should be 
restarted in one of "health" nodes;

4. Replica parametrization: The user can set any discrete value for the replica 
factor (number of data copies) and the block size. Default value in HDFS 
setting file for replica factor is 3, each block has size of 128MB;

5. Nodes topology/roles: NameNode (master), Secondary NameNode
(contains the latest file system changes), DataNode (stores blocks of files);

6. Optimized to support high-streaming read.



5/17

HDFS + MPI + Data Locality principle for scheduling

SQL Query

ReadLines

FlatMap

Reduce
ByKey

GroupBy
Key

WriteLines SQL Query



6/17

Graph approach: single-task scheduler

Assume that we have HDFS file with B blocks (with the same 
size) distributed between H hosts;

Each block is stored with replica factor R (same for all blocks); 

Problem #1: All of blocks should be distributed most evenly: 
only L blocks per host (L is max-load value). 

Problem #2: Consider switch engine (ability to transfer blocks 
between hosts dynamically) with capacity m;

Graph without switch
(Problem #1)

Graph with switch
(Problem #2)



7/17

Optimization problem



8/17

Test cases result

Equilibrium algorithm is another concept based on data 
shuffling and resorting blocks;

Baseline is the basic HDFS scheduler tool;

Optimal area search is algorithm based on binary search via 
optimal (L,m) values;

Forward search use huge steps for defining of local (L,m) 
optimum.

• Several cases were tested with the same system and data 
configuration: 200 hosts, 30000 blocks, replica factor R = 3;

• This test describes a file with 3.5 TB of data;
• 10 tests has different topology and unevenly distributed data.



9/17

Data-driven approach: multi-task scheduler

• This strategy describes the method to allocate resources 
based on task sizes, number of blocks and scoring metric;

• It should schedule cores (workers) for each task and order of 
tasks execution in batch before graph scheduler;

• The batch contains of Y tasks in batch and h hosts, C described 
a maximum number of cores per host;

• Each task in batch mapped with label of size from empty (0) to 
large (4).



10/17

Other multi-task schedulers

• Annealing: the purpose of scheduling is how to make the ”box” fit the 
tightest, that is, the shortest horizontal coordinate via avoiding the local 
minimums;

• Dynamical annealing: runtime recalculation of the optimal permutation 
based on its historical execution time;

• Multiple batch: optimal stacking mechanism for several batches execution 
based on K-Means and clusterization. No historical information.

• Greedy division: sorts all tasks by file size, the maximum number of cores 
occupies by 50% of the maximum task and for other tasks the number of 
allocated cores based on the ratio of the file size to the first task.



11/17

Scheduling efficiency: how to measure?

Problem: How can it indicate the batch execution process is effective? 
How can it measure the idle part and non-idle part? What is the target 
resource for the cluster?

The whole batch can be divided into two parts: the main part and the tail 
part. Each of them represents a useful and idle proportion of execution.

Long tail problem: huge idle part



12/17

Summary of the results: performance

Benchmark: SEQ – Service Experience Quality Analyst
Dynamic scheduling of processes, tasks and resources is required
71 tasks in batch, the total size of the batch is 584 GBs and it contains ≈ 3.6 billions of data rows;
Hardware configuration: 6 nodes at the cluster, CPU with Intel Xeon Gold 6230N (2.30GHz/20cores), RAM: 
8*32G DDR4 ECC

After SQL operations (filter, select, group by...) it was obtained 38 GBs of output data with ≈ 0.3 billions of 
rows.

Performance of different schedulers Tail metrics



13/17

Summary of the results: visualization

Gantt chart CPU utility diagrams



14/17

Conclusion
• An approach based on data locality and HDFS-file representation feature was 

implemented and proved its high efficiency in comparison with other 
strategies to reduce batch total execution time; 

• The optimal parameterization for tuning of the batch was discovered, and it 
was shown in experiments that the derived metrics perfectly demonstrated 
their applicability; 

• Heuristics is the most applicable solution for MPI-based batch and 
experimental framework;

• Data-driven heuristics is 5-10% faster than annealing algorithms;
• It’s also provides the highest efficiency capacity (20% better than annealing) 

and the highest tail CPU usage (10% better than annealing);
• Multibatch and greedy strategies are inefficient by 40-70% by time and CPU 

usage in comparison with heuristics approach.



Copyright©2011 Huawei Technologies Co., Ltd. All Rights Reserved.
The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating
results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially
from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither
an offer nor an acceptance. Huawei may change the information at any time without notice.

Thank you
www.huawei.comPresenter: Ilya Timokhin

is.timokhin@hse.ru


