Study of scheduling approaches for
batch processing in Big Data cluster

Ilya Timokhin — is.timokhin@hse.ru (Higher School of Economics),
Aleksey Teplov — aleksey.teplov@huawei.com (Advanced Software
Technologies Laboratory of Huawei Moscow Research Center)

HUAWEI TECHNOLOGIES CO., LTD.

V2

HUAWEI

Background

% i

Compute node 2

. : . : User 2 [Camput node 2]

* Scheduling and resource allocation for the tasks are basic operations for \ AL L]) /Y

ictri ; ; ; ; Internal job /

distributed systems task execution with typical goal to increase resource IEE-—— [tremaliol 1 . EETTm
utilization rate; . b :
- bUstg/qb T ¢ Jobs Ze s

. . . . User n G o External job o ’5 Compute node n

* The main concept of the scheduling approach is to spread processing tasks I scheduler e s T

between available hardware resources and define the execution order;

Nodes Time

* Depending on the application usage scenario and goals processing strategies
can also vary and use different approaches to schedule tasks and allocated
resources for internal logic;

» Different scheduling goals require different metrics optimizations that reflect
how efficient scheduling approach is.

Batches Dequeue Enqueue

batch system

» HE |
— —
Bl

user

login / front-end nodes

‘
HN
Tme @l |0

Jobiz Jobiy Job

2017

job queue Memory

Our framework for Big Data batch computations

Research part

Spawn MPI Thrift context

SQL parser - :
SQL query - : Locality
> expelgrL:tlon } Scheduler Executor

*This framework combines MPI
distributed approach with high-
performance APIs to provide fast
batch calculations.

It use Thrift to provide SQL context
and HDFS to store the data;

It supports client/executor/SQL
parser modules for simultaneously
batch processing;

*But the problem of data location in
HDFS and optimal number of
workers for MPI batch is still open!

3/17

obj

MPI_COMM_WORLD (0)

mpirun -H nodel:1./a.out

MPI_Init

MPI_Comm_spawn
scheduler
® S @ |4

@ MPI_Comm_spawn

/ MPI_Finalize
./b.Othﬁ
.Jc.out \\
MPI_Init MPI_Init
® ®

MPI_Finalize

MPI_COMM_WORLD (1)

MPI_Finalize
MPI_COMM_WORLD (2)

2 HUAWEI

Data locality principle

Data movement is costly operation that is better to avoid in distributed systems; e
Hadoop-like data storage provide computations and data on the same ===
distributed HQ cluster. ¢

Input files
(on HDFS)

1. Data-to-blocks: the whole system is designed to store incredibly large files

Key-1: Value-1 |

Koy-1: Valuo-6 | |

Intermediate files
(on local disks)

Key-1: Value-3 —-»Hedl

Output files
(on HOFS)

(>10GB) across different machines (nodes) in a cluster. HDFS stores and split
each file as a sequential set of blocks;

Increase Job Throughput
Via Intelligent Scheduling

Rack Local
=

RRRRR

Different Rack =/-
| Nodey |

2. Computing-to-data: we should bring the computing to the data instead 4 Data Locality
bringing the data to the computing as another file storages; E s
4 x —
3. Fault tolerance: If any node get down the data continues processing in the § Léﬁ - —
other copies (replications) and the part of failing computations should be 2 'E'EE - 2| b
restarted in one of "health" nodes; Earr
4. Replica parametrization: The user can set any discrete value for the replica E:i’f
factor (humber of data copies) and the block size. Default value in HDFS Time Time
setting file for replica factor is 3, each block has size of 128 MB; o Sackd
/ \ / \
5. Nodes topology/roles: NameNode (master), Secondary NameNode rumor () ()= #r2mo7() JE=—2
(contains the latest file system changes), DataNode (stores blocks of files); rmo2() (JE=—= #n2mos(_][JE—
/r1/m03@ @ /r2/m09@@
_— . . /r1/mO4 m2mio[1 E—21
6. Optimized to support high-streaming read. /r1/m05%% f2m11)) =
rimos ([E—21 mm12[JCJE—

417

Large system

2 HUAWEI

HDFS + MPI + Data Locality principle for scheduling

Job
Query1
Que
[NewQuery]—) run SQL... .ryz
SELECT * FROM ... NewQuery
explain SQL schema
of NewQuery
invoke HDFS...
Cores Scheduling HDFS file of NewQuery
(blocks distribution)
Btk | Sooren host1 | block1
distribute Cores based on fetch information about blocks
host2 | 7 cores Heuristics algorithm and hosts (DataLocality) host2 | block2,block3
host3 [10 cores host3 | blockd,...,block50
No, move to the next NewQuery...
RSN Collect information about Blocks and
blocks n n abou an
Sronminct Ceaph i Gm;f:";im :(> Cores distribution for NewQuery after is it last NewQuery?
Scheduling
Blocks distribution update Yes, we can run the whole Job
host1 | block1,...,block16
v
host2 | block17,...,block33
Open connection to necessary
host3 | block34,...,.block50 Hosts (Thrift)
Run the whole Job in 4
distribution Submit each Query to Hosts
multiprocessors mode

2 HUAWEI

Graph approach: single-task scheduler

Other hosts

Assume that we have HDFS file with B blocks (with the same

size) distributed between H hosts; Graph without switch

(Problem #1)

/.
source /
e

Each block is stored with replica factor R (same for all blocks);

Problem #1: All of blocks should be distributed most evenly:
only L blocks per host (L is max-load value).

Problem #2: Consider switch engine (ability to transfer blocks
between hosts dynamically) with capacity m;

Block Replication

/users/sameerp/data/part-0, r:2, {1,3}, ...

Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-1, r:3, {2,4,5}, ...

Datanodes

[1] B 2] B EH | B E Graph with switch
(Problem #2)

w |m B|H ol]

Ilustration of data distribution in HDFS with B=5, H=8, R=2 for blocks 1,3 and R=3 for blocks 2,4,5)

2 HUAWEI

Optimization problem

* To optimize both L and m values let’s describe two additional parameters: tc— cost
of computation for one block and t:— cost for transferring of one block.

* We consider cost function: C(L,m)= Ltc+ mTt

* Instead of optimization only L parameter, we will optimize C(L,m) value with given
cost metrics;

* To achieve the better results, we will use combination of binary search and Dinic’s
algorithm (for obtaining max-load value).

* We also should consider trade-off between number of transfers and minimal load
of one host.

T, T; ratio L m
11 1 100 0
1 05 2 75 | 25
1 025 4 75 | 25
mi 05 1 0.5 100 0 -

m L C(L,m)
15000 150 | 15300
936 150 = 1236
467 152 771
116 154 = 424
57 155 = 367

28 155 = 338

6 155 = 316

0 155 = 310

2 HUAWEI

Case |Graph (no switch)|Equilibrium| Baseline

Test cases result I e T TTime [T [Time
(secs) (secs) (secs)

0 155 |0.154 156 |164.06 170 |0.136

Several cases were tested with the same system and data 1 155 [0.149 155 [169.36 165 |0.132
configuration: 200 hosts, 30000 blocks, replica factor R = 3; 2 136 10.156 156 |172.76 |169 10.135
3 154 |0.153 154 |170.12 [166 |0.139

4 153 |0.154 153 |165.00 |163 |0.131

This test describes a file with 3.5 TB of data; 5 153 0.140 153 |165.97 |168 |0.133
: e 6 155 |0.159 155 |172.54 164 |0.131

10 tests has different topology and unevenly distributed data. - 0T 0 ies 015
8 154 |0.140 154 |170.17 |165 |0.133

9 155 |0.147 155 |172.43 168 |0.132

Equilibrium algorithm is another concept based on data

sh uffllng and resorting blOCkS; Case Optimal area search Forward search
L |m |C(L,m) |Time |L |m |C(L,m) |Time
L) (secs) (secs)
Baseline is the basic HDFS scheduler tool; 0 150 |34 [150034 |1.0365 |150 |34 |150034 |0.5301
1 150 |50 |150050 |1.0536 [150 |50 |150050 |0.6891
Opt_lmal area search is algorithm based on binary search via . 150 116 1150046 0632 150 116 50016 107385
optimal (L,m) values; 4 150 [45 |150045 |[1.0314 (150 |45 [150045 |0.7191
: d h h tor defini flocal (L 6 150 [50 |150050 |1.4023 [150 |50 |150050 |0.8845
orward search use huge steps for defining of local (L,m) 7 150 |45 |150045 |1.2511 |150 |45 |150045 |0.7673

optimum.

8/17

2 HUAWEI

Data-driven approach: multi-task scheduler

This strategy describes the method to allocate resources
based on task sizes, number of blocks and scoring metric;

It should schedule cores (workers) for each task and order of
tasks execution in batch before graph scheduler;

The batch contains of Y tasks in batch and h hosts, C described
a maximum number of cores per host;

Each task in batch mapped with label of size from empty (0) to
large (4).

Algorithm 2 Simplified data-driven description

1:

o

9/17 11:
12:

Assume there are N tasks in batch A and array W of weights for task sizes’ labels
from 0 to 4 (according to aliases ”empty”, "small”,...,”large”) for each task in A,
|W| = N; Set the batch cardinality parameter A and the o-density parameter as
well.

Reorder tasks based on block sizes (descending order);

Create new batch: choose 1 task from "head” of the queue and x tasks from ”tail”,
where > W (z) &~ o and repeat it until the end of batch;

Calculate mean number of blocks M for all tasks;

for each task ¢ in Job do

Cores = 7N“m3ﬁmks(q) X % + 7.(q) Z((Z));
if Cores > % then

Cores = %;
end if

Assign Cores for task ¢ and distribute them uniformly between all h nodes;
Do a single task scheduling for ¢ (Graph strategy);
end for

10

10

10

10

15

10

15

10

15

10

15

10

15

time

592

578

570

522

517

500

477

456

428

515

504

498

588

560

531

Pure CPU usage
50.93
62.21
65.14
65.42
68.92
71.93
65.66
76.39
77.52
53.45
59.68
62.77
77.24
70.51

66.01

Tail CPU usage
76.58
77.80
68.85
51.33
80.21
70.28
50.28
80.66
71.04
67.43
69.66
65.02
50.25
48.54

41.00

2 HUAWEI

Other multi-task schedulers -

* Annealing: the purpose of scheduling is how to make the "box” fit the
tightest, that is, the shortest horizontal coordinate via avoiding the local
minimums;

time(t)

* Dynamical annealing: runtime recalculation of the optimal permutation
based on its historical execution time;

* Multiple batch: optimal stacking mechanism for several batches execution
based on K-Means and clusterization. No historical information.

worker(w) —

e Greedy division: sorts all tasks by file size, the maximum number of cores
occupies by 50% of the maximum task and for other tasks the number of :
allocated cores based on the ratio of the file size to the first task.

time(t)

oo
LT
‘..

o0 0
o

Cl'e
o

=]
oo
oo

10/17 wz nvAWEI

Scheduling efficiency: how to measure?

Pod A

CPU ... Throttled cpu.limit=2
§ { Thread1

Problem: How can it indicate the batch execution process is effective? el .
How can it measure the idle part and non-idle part? What is the target cPU2 | - ean | 12
resource for the cluster? cput| [Thesdt] {Teeads] |

CPUO 5
The whole batch can be divided into two parts: the main part and the tail 5 prY— - . —
part. Each of them represents a useful and idle proportion of execution.
— Execution time: the whole time of scheduler work (basic metric);
— Main part time: execution time without tail part (from 0 seconds to t);

Head

— Tail time: execution time of tail part (from ¢ to the end);
— Pure CPU usage: square of the diagram in the main part;

— Tail CPU usage: square of the diagram only on the tail (starts from tA);
— Tail overhead: the ratio between tail time and median time value among Long Tail
all of the tasks;

— Efficiency capacity: summation of the execution time of each task multi- _ _
plied by the total used cores for current tasks. Long tail problem: huge idle part

117 @@ HUAWEI

Summary of the results: performance

Strategy Time (Secs) Eﬂ:’lciency ca- Method Main part|Tail time |Pure CPU|Tail Tail
pacity time usage (%) |over- |CPU
head
MultiBatch 996.851594 |33792.451026 I
Greedy 520.334221 30531.777603 Annealing 417.083 [28.452 79.54 2.82 [36.70
Data-driven 482.04614 25617.325310 Dyn. Annealing 321.111 121.281 |76.17 6.81 |68.67
: MultiBatch 567.060 |429.790 |96.07 129.69 |2.64
Dyn.an.neahng 442.392825 24944 .507181 Groody 155 189 135151 .96 L5 loio3
Annealing 445.535692 |25340.807954 Do e 113250 [68.795 |75.62 1038 [27.55
Simple d.-driven ~ [428.740834 [22410.507381 Simple d.-driven [377.707 |51.033 [8401 |2052 |78.77
Performance of different schedulers Tail metrics

Benchmark: SEQ — Service Experience Quality Analyst

Dynamic scheduling of processes, tasks and resources is required

71 tasks in batch, the total size of the batch is 584 GBs and it contains = 3.6 billions of data rows;
Hardware configuration: 6 nodes at the cluster, CPU with Intel Xeon Gold 6230N (2.30GHz/20cores), RAM:
8%32G DDR4 ECC

After SQL operations (filter, select, group by...) it was obtained 38 GBs of output data with = 0.3 billions of
rows.
1217 @@ HUAWEI

Summary of the results: visualization

(a) MultiBatch

(b) Greedy

(d) Dyn.Annealing

1317

(c) Annealing

e) Data-driven

Gantt chart

(f) Simple d.-driven

LLLLLLLLL

1

TN
EEnnEnEnnnn

|
|

(a) MultiBatch (b) Greedy (c) Annealing
(f) Simple d.-driven

(d) Dyn.Annealing (e) Data-driven

CPU utility diagrams

2 HUAWEI

Conclusion (.=

An approach based on data locality and HDFS-file representation feature was
implemented and proved its high efficiency in comparison with other
strategies to reduce batch total execution time;

The optimal parameterization for tuning of the batch was discovered, and it
was shown in experiments that the derived metrics perfectly demonstrated

their applicability; i
Heuristics is the most applicable solution for MPI-based batch and —
experimental framework;

MapReduce Status ——»

Code for

paralielize

Data-driven heuristics is 5-10% faster than annealing algorithms; Il Nome Noce |

It’s also provides the highest efficiency capacity (20% better than annealing) 1 Hadoos } gl
and the highest tail CPU usage (10% better than annealing); o ¥

Multibatch and greedy strategies are inefficient by 40-70% by time and CPU Pl . "R
usage in comparison with heuristics approach. Outaode | | Detabade | - f outaNode | | Dataade |

Map Reduce Map Reduce Map Reduce Map Reduce

Task Tracker Task Tracker Task Tracker Task Tracker
1 J

Rack 2 «

14/17 @@ HUAWEI

Thank you

Presenter: llya Timokhin

is.timokhin@hse.ru

