Data-based choice of the training dataset for the numerical dispersion mitigation neural network

K. Gadylshin, V. Lisitsa, D. Vishnevsky, K. Gadylshina Institute of Mathematics SB RAS Institute of Petroleum Geology and Geophysics SB RAS

NDM-net

Numerical dispersion

ux h=2.5m

difference

NDM-net

- 1. Compute **all** common-shot gathers using **coarse grid**
- 2. Compute **several** common-shot gathers using **fine mesh** the training dataset
- 3. Train the NDM-net
- 4. Correct the solution for all common-shot gathers

An example

Numerical dispersion mitigation

h=10 to h=2

NRMS

NRMS %

Speed-up

Simulation of the entire dataset:

2x2 м – 23 hours 5x5 м – 2.3 hours 10x10 м – 0.6 hours

Number of shots in the training dataset – 190 Training time – 40 min Correction time – 0.1 seconds per shot

Time **f-d + NDM-net**:

Entire dataset on 5 m grid: 3 hours Generation of the training dataset: 2.3 hours Training: 0.6 hour

In total: 6 hours

Depth (km) ^o

Matrix of NRMS

Matrix of NRMS

distance matrix Source number Source number

Matrix of NRMS

NRMS distance to the training dataset

$$d_j = \min_t NRMS(f_t, f_j)$$

Training dataset	(min)	NRMS	Speed-up
5%	32	44%	4.5
10%	40	29%	3.6
20%	43	23%	2.6

Training dataset with fixed NRMS

Training dataset with fixed NRMS

 $D = \max_{j} d_{j} = \max_{j} \min_{t} NRMS(f_{t}, f_{j}) \leq ?$

Training dataset with fixed NRMS

$$D = \max_{j} \min_{t} NRMS(f_t, f_j) \le ?$$

Dataset	Number of sources	NRMS
60%	414	30,28%
70%	109	34,69%
80%	56	35,11%
90%	43	35,68%
100%	34	36,26%
Eq 10	191	31,91%

 $d_j = \min_t NRMS(f_t, f_j)$

100 -		Distar	nce to the training data	aset		
90 -				ANAAAA		D_{2} D_{5} D_{10} D_{20}
80 -		-11				D ₅₀
70 -		- A Martine				
09 (%)						
- 50 -			Min	T-U	ALL .	
40					-40.4	
30						
20_0	500	1000	1500	2000	2500	300
			Source number			

Training	Number of	NRMS
dataset	source	
2%	55	50%
5%	135	44%
10%	270	40%
20%	540	37%
50%	1348	31%

$$D = \max_{j} \min_{t} NRMS(f_t, f_j) \le ?$$

Training	Number of	NRMS
dataset	sources	
NRMS 90%	27	46%
NRMS 80%	90	41%
NRMS 70%	216	35%
NRMS 60%	425	31%
NRMS 50%	794	27%
NRMS 40%	1672	24%

$$D = \max_{j} \min_{t} NRMS(f_t, f_j) \le ?$$

Training	Number of	NRMS
dataset	source	
2%	55	50%
5%	135	44%
10%	270	40%
20%	540	37%
50%	1348	31%

Training	Number of	NRMS
dataset	sources	
NRMS 90%	27	46%
NRMS 80%	90	41%
NRMS 70%	216	35%
NRMS 60%	425	31%
NRMS 50%	794	27%
NRMS 40%	1672	24%

Conclusions

- Machine learning may be an efficient tool to speed-up seismic modelling even if a naïve strategy to training dataset construction is used.
- If the training dataset is constructed to preserve a certain NRMS level between the training dataset and the entire dataset, the number of shots in the training dataset may be further reduced.

Thank you for your attention!