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Introduction: Seismic modeling

L[i(t,%)] = F(£)d(% — %),

where L is the differential operator governing seismic wave propagation,
u(t, X) is the velocity, f is the pulse and X; is the source position.

P * - seismic source A -seismic receiver

e ——
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Introduction: Seismic modeling

Up, is the numerical solution (seismogramm) modeled on a coarse grid
Up, is the seismogram modeled on a fine grid

i, |, — |

U’hl 2

1%, %l 100% ~ 69 — 107%

[[dih, []
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NDM-net

||Tn, — Uh,|| = €, where hy > ho,
||G(dh,,0) — Up,|| = << ¥,

(1)

where @ = {W, b} is the parameter, which includes the weight matrix W
and bias b.

During the training the parameters are optimized by minimizing the loss
function:

L(6) = Exy[l|@2 — G(a1, 0)I]u],

where {ify, io}_; is the training set of size equal to N.
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NDM-net

Concatenate

4xd x4

3a3p 1616 OB 5 616
128128 6964 128128
256%256 2563256

S12%512 - LeakyReLU, convolution ReLu, up sampling 512%512

3232 64x64

- input Z, output
L - Batch Normalization -Dmpo-l ip
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Input data: BP Model

The size of the model is 67 km in horisontal direction and 12 km in vertical
direction. The acquisition system consists of 2696 sources with a distance
of 25 m. The wave field is recorded be 2401 receivers with the distance of
15 km. The distance between receivers is 12.5 km. We used Recker wavelet
with a central frequency of 30 Hz.

hy = 6m, hy = 3m. The seismic data was cropped so that there was no
direct wave and had a size of 512 x 512.

o
4500
250
. 4000
250 3500
€ 2
N 1000 30008
1250 2500
1500
2000
1750
| 1500
0 1000 200 3000 e 00
X, m

Fongon E.A., Jlucnuya B.B. (UHIT CO FUse of different metrics to generate train September 26, 2023 7/36




Input data: Vanavar model

The size of the model is 220 km by 2.6 km. The aquisition included 1901
sources with a distance 100 m. The wavefield is recorded by 512 receivers
with maximal source-receiver offsets of 6.4 km. The distance between the

receivers is 25 m. The source is a Ricker wavelet with a central frequency
of 30 Hz.

h; =5m, hy; =2.5m. We have 512 x 512 cropped seismograms.
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Training dataset options: Distance between the sources

The most obvious way to construct a training sample is an equidistant
arrangement of sources:

J% =1, k, 2k, ..., q(k)k,

where k € N, k > 1 and q(k) = Ns/k.
Then, the distance between the sources is

d = |xd — x| = li - jld,

where d is the distance between the two adjusted sources.
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Training dataset options: Distance between the seismograms

The metric can be introduced on the base of L2 norm:

. . : t — dlt i
05 — (it 500 ), (8, 1)) — 2T X018) = B(E X0, 35) 2
1(t, X0, X) 12 + (| (2, X0, X0) 12

where

t 0
H (t Xos Xs ”2 - Z Z tn’Xo ’Xs) + u2(1.',7, Xo 7Xé)] ’

n=1 m=1

where N; is the number of samples in time, N, number of traces in the
seismogramm.
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Training dataset options: Distance in the space of models

The distance between the models can be introduced as

M(x,2,5) = M(x, 2,502
HM(X,Z,Xé)”z + ”M(X7 va.é)”2

di

m

= dm(M(X,Z,X£), M(X727Xsi)) =2

where

xi+Ly
|M(x, z, xD)||3 —/ / 2(x z) + v2(x, )] dxdz.
X
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Training dataset options: Distance matrixes
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Training dataset options: Distance matrixes (Vanavar)
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Training dataset options: Hausdorff distance

Set A Set B
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84 = max min d’(xl, x0),
XESdes, |
ds = max min d¥(d(t, x,x%), d(t, x0, x2)),
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Numerical results
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Numerical results
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Statistical analysis: random training dataset

We trained a set of neural networks for each randomly generated samples

and calculate the errors between all generated seismograms and
seismograms modeled on a fine grid:

N,

L1l . |

5 Mst(c[uhz(t,xo,xf)],u,,l(t,xo,x,.s)).
i=1
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Statistical analysis

0.8
05 +
. 0.7

0.4 0.6

wy 08
0.4
0.3

02
0.2

0.1 0.1

50 100 150 200

(a) BP model (b) Vanavar model

Let & = f(¥), where ¥ = (N, 0q,0s,0m) "
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1

For BP and Vanavar models Sy = 0.63.
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Statistical analysis: for fixed N

We assume that the error can be represented as

EN.(0d, 05y 0m) = E0 + @101 + 202 + a3d3 + 0(d1, 02, 3),

where £y is the mean error for fixed size of training sample, N. = const,
(517 627 63) - (5d7 557 6m)

q(a151 + ado + C¥353) — min, for Vg >0eR.
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Statistical analysis: for fixed N

7

Var(E- .(€|9; ;
5 = ar( §NIE€| )) _ OZ L6 Z 55
Var (&) > i(ajLs;)?

where L;, is the extent of ;.

rk:
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Statistical analysis: for fixed N

BP Vanavar BP | Vanavar
Ss, | 0.499 0.489 ag | 0.815 | 0.812
S5, | 0.0442 | 0.139 as | 0.089 | 0.112
Ss, | 0.4565 | 0.3714 am | 0.095 | 0.075
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Statistical analysis: for fixed N
We consudered the minimization problem:
0.81304 + 0.165 + 0.0859,, — min.

BP model
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Statistical analysis: for fixed N
We consudered the minimization problem:
0.81304 + 0.165 + 0.0859,, — min.

Vanavar model
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Statistical analysis: for fixed N

0.81304 + 0.165 + 0.0859,, — min.

BP model (I\( =100)
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Statistical analysis: for fixed N

0.81304 + 0.165 + 0.0859,, — min.

Vanavar model (N =110)

T
—— DHs
124
—— pHm
104 —— pDHa
——— DHnew
084
w L |
0.6
04 Il i MM
—~MfN_ |
—
6 25‘0 500 750 1000 1250 1500 1750

Source index

u]
@
I
ut
i
<
£
¢

Fonaon E.A., Jlucnua B.B. (UHIT CO FUse of different metrics to generate train



Training dataset size is 295!
. i, . i, . Fliin) . (i,

—Gp,|, L3 =121%

Vanavar model, training dataset size is 200!
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Conclusion

@ The NDM-net was presented

@ According the provided global sensitivity analysis the most significant
parameter affecting the output error is the distance between the
source positions

@ The results of training on all samples showed that using the new
metric, we can suppress the numerical variance for the BP model by

70%, while training on other datasets suppresses the variance by up to
60%

Thank you!
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Statistical analysis: for fixed N
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Statisitcal analysis: for rixed N

BP model Vanavar model
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Principal component analysis

zllj\l = COV((S;V’ 6JN) = E[((SIN - ]E[(SIN])((SJN - E[éjN)]]a
where [E stands for the mean value, §; and dj can be any of the three

distances dy4, ds, or 0, and N denotes the number of seismogramms in the
considered datasets.

BP model

Vanavar model
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Global Sensitivity Analysis

We consider a continuous scalar function ¢ : RP rightarrowR defined on
the interval [0,1]P. The input is a p—dimensional random variable

X = (XMW, x@ . X)) and the output is defined as Y = ¢(X). X() is
independent.

In the consedered framework, it is thus possible to show that ¢ can be
decomposed into elementary functions:

P
o(X) = o+ ai(XN+ 0 05X XD) o pir (XD, X)),

i=1 1<i<j<p

where ¢ is assumed to be integrable, ¢ is a constant.

P
Var(Y)=V =Y Vi+ > Vij+..+Vi_,
i=1 1<i<j<p

where

Vi = Var(E(Y X)),
Vi = Var(E(Y X, XU)) = V; — V;,and etc.
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Global sensitivity analysis

Sobol sensitivity indices at first order S; for the X(7) are then defined with

o Vi_ Var(E(Y|X(1))
TV Var(Y)

Sensitivity indices at second order Sj;:

Fongon E.A., Jlucnuya B.B. (UHIT CO FUse of different metrics to generate train September 26, 2023 32/36



Global Sensitivity Analysis

of of
f(x,y)=fo+ 8_X(X — X0) + @(y —y0)+o(...),
of of
Var() = [ (Fxy) =Py = [ (5 (e—x0)+ 5y — o)y
(x.y) (x,y) 90X Y

Of 5,0  ,0f 5.5

= VX = (%LX)2
Var(f) (%Lx)2 + (g—;Ly)2

S«
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Wave equation

ol = B+ B,

— sz 00zz

PoE = + 5

8axx _ (/\+2N)6ux +)\8uz + f;om (2)
G 00 2 47

5 :uax +ua“;+fxz,

where i = (uy, u;)" is the particle velocity vector, oxx, 02z, 0x, are the
stress tensor components, p = p(x, z) is the mass density, A = A\(x, z) and
ft = pi(x, z) are the Lame’s parameters, and Froc = Frx(1)0(x — X5)0(z — 25),
frz = f2(t)0(x — x5)0(z — 25), Fz = fiz(t)0(x — x5)I(z — z5) are the
seismic moments tensor. Typically, the point sources are considered, thus
d(x — xs) is the Kronecker's delta function, where (xs, z;) is the source
location coordinates. The time wavelets f (t), f2-(t),fz(t) are defined by
a band-limited impulse.
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Numerical dispersion

for the considered fourth-order in space second-order in time scheme the
phase velocity of the numerical solution is

fd _ 4 Nc : /12 | 12
¢’ =+ ~arcsin (a ki + k2> ,

b= i (2550 — Jsin (225512 g
1?2 — %Sin <ﬂ-5ilr\1/(ﬁ) _ isin 37r5|7,\rl1(5)) ,

where N is the number of points per wavelength, « is the Courant ratio, 3
is the angle defining the propagation direction, and c is the true phase
velocity. It is clear, that the phase velocity ¢’ depends on the signal
frequency, thus leads to the change of the signal shape and discrepancy in
the wave propagation time.
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NDM-net

Downsampling and upsampling layers include the convolutional layer with
kernel size (4 x 4 x 4), activation function ReLU(-) = max(0, -) for decoder
and LeakyReLU(-) = max(0,-) + ¢ min(0, -) with negative slope coefficient
¢ = 0.2 for encoder.

Parameter Value
Learning rate from 0.01 to 0.0001 during epochs

Momentum parameters 81 = 0.5, 6, = 0.999

Batch size 10
The number of epochs 500
Optimization algorithm Adaptive Momentum (Adam)

Optimality criterion Mean Absolute Error (MAE)
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