
MDProcessing.jl: Julia
Language Application to the

Molecular Simulation
Trajectory Analysis

Vasily Pisarev1,2, Mikhail Panov1
1HSE University

2Joint Institute for High Temperatures of RAS

Forces are computed from an analytical potential
(force field)

Equations of motion are solved using
a finite-difference algorithm

Fi = miai

Molecular Dynamics Simulations

𝑭 = −𝛻𝑉(𝑟) 𝑭! =)
"#!

𝑭!"

𝒓! 𝑡 + Δ𝑡 = 𝒓! 𝑡 + 𝒗! 𝑡 Δ𝑡 + 𝒂! 𝑡
Δ𝑡"

2
𝒗! 𝑡 + Δ𝑡 = 𝒗! 𝑡 +

𝒂! 𝑡 + 𝒂! 𝑡 + Δ𝑡
2

Δ𝑡

X
Z

vx

(Muller-Plathe) Muller-Plathe, Phys Rev E, 59, 4894-4898 (1999).

L ~ 6 nm;T = 330 K; N = 80k;

⌘ =
jz(px)

@vx/@z

Example: shear flow

Подробности: Кондратюк Н Д, Писарев В В
"Теоретические и вычислительные подходы к предсказанию вязкости жидкостей"
УФН, 2023

Molecular Dynamics Simulations
• Computation of thermophysical properties involves

• Structural analysis of instantaneous states
• Averaging properties over a trajectory

• Typical system: 1k – 10M particles

• Typical simulation time: 10 ps – 100 ns (10k – 100M
time steps)

• Large amount of data per trajectory, analysis becomes
computationally challenging task

Tools for Simulation

• Primary requirements:
• Fast implementation of standard integration methods, thermostats, force

fields
• Correctness and robustness

• Simulation packages: Gromacs, LAMMPS, DL_POLY, HOOMD
• Highly optimized for CPU, GPU or both
• Almost necessary to use a programming language with a low-level

control: C++ or Fortran (maybe Rust, we may see new packages
released in the next few years)

Trajectory analysis

• The most time-consuming part is already done
• Less pressure on performance

• Two kinds of needs
• Standardized analysis
• Exploratory analysis, development of new structural and dynamic properties

Non-standard properties

• Correlation between interatomic separation and velocity directions

• Characterize the degree of molecular ordering

• Identification of H-bonds
𝑟 < 𝑟!

|𝜃 − 𝜃!| < 𝛿

Existing approaches
Static implementation as an executable program
(TraVIS, LAMMPS, Gromacs)

Scripting language binding (VMD, OVITO)

ü Fast ü Fast “standard” methods implemented in C++

ü Can be done on the fly within MD simulation
software (LAMMPS, Gromacs)

ü Easy user extension

ü Interop with programs written in the scripting
language – processing is easily incorporated into a
higher-level pipeline

• Not extensible without rebuilding the executable

• Interop with other programs only via file output • User-defined extensions will be less performant
than “built-in” operations

Existing approaches
Static implementation as an executable program
(TraVIS, LAMMPS, Gromacs)

Scripting language binding (VMD, OVITO)

ü Fast ü Fast “standard” methods implemented in C++

ü Can be done on the fly within MD simulation
software (LAMMPS, Gromacs)

ü Easy user extension

ü Interop with programs written in the scripting
language – processing is easily incorporated into a
higher-level pipeline

• Not extensible without rebuilding the executable

• Interop with other programs only via file output • User-defined extensions will be less performant
than “built-in” operations

Existing approaches
Static implementation as an executable program
(TraVIS, LAMMPS, Gromacs)

Scripting language binding (VMD, OVITO)

ü Fast ü Fast “standard” methods implemented in C++

ü Can be done on the fly within MD simulation
software (LAMMPS, Gromacs)

ü Easy user extension

ü Interop with programs written in the scripting
language – processing is easily incorporated into a
higher-level pipeline

• Not extensible without rebuilding the executable

• Interop with other programs only via file output • User-defined extensions will be less performant
than “built-in” operations

Middle ground?

Why use Julia programming language?

• Dynamic typing and duck typing – good for exploratory programming and
data analysis
• Type inference: in a carefully-written program, types can be statically

inferred
• JIT compilation – carefully written code can be statically type-inferred and

compiled to fast native code
• Core computations can be implemented in pure Julia
• User-defined data types are as performant as built-in types
• Raw loops are fast - no need to jump through hoops to offload heavy computations

to a specialized numerical library
• Convenient out-of-the-box data containers such as arrays, tuples,

dictionaries, sets, multiple useful data structures provided by third-party
packages

Why use Julia programming language?

• Parallel features:
• Native task-based multithreading
• Distributed-memory computing via built-in Distributed.jl or MPI

bindings
• CUDA programming via CUDA.jl

MDProcessing.jl package

• A package for computing properties from MD trajectories

• Written in Julia

• Data format: LAMMPS dump files (XYZ and LAMMPS data files are
planned)

• Built-in analysis functions are defined, user extensions in Julia are
possible

MDProcessing.jl intended workflow
Define a function

that computes the
needed property

MDProcessing.jl intended workflow

Load a snapshot

Compute the
property

Define a function
that computes the
needed property

MDProcessing.jl intended workflow

Load a snapshot

Compute the
property

Define a function
that computes the
needed property

Repeat for multiple
configurations Compute average

Performance assessment

• Test problem: computing the radial distribution
function
• Benchmarks one of the costly operations in

particle simulation analysis – neighbor search
• Algorithmic complexity O(N2) with naïve search,

O(N×Rc
3) with cell list structure

Performance assessment

• Test system: Lennard-Jones fluid
• Constant density 𝜌 = 0.75
• Varying system size and cut-off radius

RDF compute time for different
system sizes (Rc = 2.5)

Performance assessment
Effect of cut-off radius and multi-threading

Some results

𝑆 "
/𝑘

#
pe

r c
ar

bo
n

at
om

𝑟[Å]𝑟[Å]

𝑔 $
$
𝑟

Computation of RDFs in molecular systems separated into intra- and intermolecular contributions
Nikitiuk, Salikova, Kondratyuk, Pisarev // J Mol Liq 2022

Some results

Straight-line fitting and orientational distributions of molecules
Pisarev & Kalinichev // J Mol Liq 2022

Conclusions

• Julia language is suitable for performance-demanding computational
tasks
• Dynamic typing and scripting nature of the language make it

convenient to do exploratory analysis and prototyping new ideas
• Performance-critical parts of the analysis can be optimized in the

same language
• The core functions of MDProcessing.jl are shown to have the

performance comparable to OVITO (written in C++)

• Project repository: https://gitlab.com/pisarevvv/mdprocessing.jl/

