MDProcessing.jl: Julia
Language Application to the
Molecular Simulation
Trajectory Analysis

Vasily Pisarev!?, Mikhail Panov?!
IHSE University
2Joint Institute for High Temperatures of RAS

Molecular Dynamics Simulations

F.= ma,
Forces are computed from an analytical potential
(force field)

Jj#i
Equations of motion are solved using
a finite-difference algorithm

r;(t+At) =r;(t) + v;(t)At + a;(t) Ath

a;(t) + a;(t + At) A

vi(t + At) — Ui(t) + >

t

"
o ®°
®

Example: shear flow

i

L

-

s -

X LI o 4

. f"u‘ " Py PR o SR AOR NGy 2 e “ ‘?

DR, T U e il Ly

.] L -

s - - ™ ‘Z ;‘ J.\‘."-i"!‘. .' . L | N :J} ". ... > “-"

N e 3 S P PN, TR i A e 1 bl P P e ¥ r» \

getgs NN S T e A S DRt N T £ P e

(iR A 4 e ¥ Ay Al s - r- b’ 4 » Pt | . Lp]

e g Wil M oSN, S X e Y AL e

.,:-;’"' & - "‘ - L N iwk ‘8 i .':.".d - - L w .k Ny mE N
L .'Pw.- a vy & N J L™ i) =" Mg N o -

s,) .":lr' p 7’..&;] q}:‘ 2 il "..".u‘. s LY ""."‘-5 : 4 :‘..‘ .\;-
L W Iy R A wlh vy P X Talagrit I

Cafdo b it T G O A S Lo L L e

R 3> ks A av SO . % X B SN N
BT \.. .l‘-g E A ‘..‘"l‘ R 3 L ..‘l . g4
- (WD 5 3

i’ s" ;."' 1. .l\ll J
. : T T LG Ly A

- 3 3 = - . B 3 -
- ?'-’-':7': " DY, - ?‘.’i-‘:,‘,'.' s SN PR R TR
b b oty s Y “ "\"g Y.~ P t-:‘..‘_\‘ e
ey Yy .,*: = 'I.‘ e v N s-:" 3 3 e ,'a v ar g ‘\" . P 4
- - v . -

-

Z T=330K; L~6nm; N =80k;
X (Muller-Plathe) Muller-Plathe, Phys Rev E, 59, 4894-4898 (1999).

lNodpobHocmu: KoHgpaTtiok H [, Nucapes B B
"TeopeTnyeckne 1 BblYNCINTENbHbIE NOAXOAbLI K MPeAcKa3aHnio BA3KOCTU XKuakocten"
Y®H, 2023

Molecular Dynamics Simulations

* Computation of thermophysical properties involves

[(uo/B] Aysua(q

g 108 TR e it i
 Structural analysis of instantaneous states ,§§3§§#§}§f‘”£§zﬁfwf ’géﬁgi?
. : . 5 30T »;:*3 S N 25 48
* Averaging properties over a trajectory e 3 ";“;&g~.@;.3¢‘;{iﬁgi"“§'§§£ 14
18 it ittt Hhe T
* Typical system: 1k — 10M particles 75— — s
5t
2.5
g o
* Typical simulation time: 10 ps — 100 ns (10k — 100M ~ |
time steps) b 025
“’cvmﬁm;/j
R -1 0 1 ;!
z [nm]

e Large amount of data per trajectory, analysis becomes
computationally challenging task

Tools for Simulation

* Primary requirements:

* Fast implementation of standard integration methods, thermostats, force
fields

* Correctness and robustness
e Simulation packages: Gromacs, LAMMPS, DL_POLY, HOOMD
* Highly optimized for CPU, GPU or both

* Almost necessary to use a programming language with a low-level

control: C++ or Fortran (maybe Rust, we may see new packages
released in the next few years)

Trajectory analysis

* The most time-consuming part is already done
* Less pressure on performance

* Two kinds of needs
* Standardized analysis
* Exploratory analysis, development of new structural and dynamic properties

Non-standard properties

* Correlation between interatomic separation and velocity directions

* Characterize the degree of molecular ordering

e |dentification of H-bonds

Existing approaches

Static implementation as an executable program Scripting language binding (VMD, OVITO)
(TraVIS, LAMMPS, Gromacs)

v’ Fast v’ Fast “standard” methods implemented in C++

v’ Can be done on the fly within MD simulation v’ Easy user extension
software (LAMMPS, Gromacs)

v’ Interop with programs written in the scripting
language — processing is easily incorporated into a

higher-level pipeline
* Not extensible without rebuilding the executable

* Interop with other programs only via file output » User-defined extensions will be less performant
than “built-in” operations

Existing approaches

Static implementation as an executable program Scripting language binding (VMD, OVITO)
(TraVIS, LAMMPS, Gromacs)

v’ Fast v’ Fast “standard” methods implemented in C++
v’ Can be done on the fly within MD simulation v’ Easy user extension

software (LAMMPS, Gromacs)

v’ Interop with programs written in the scripting
language — processing is easily incorporated into a
higher-level pipeline

* Not extensible without rebuilding the executable

* Interop with other programs only via file output » User-defined extensions will be less performant
than “built-in” operations

Existing approaches

Static implementation as an executable program Scripting language binding (VMD, OVITO)
(TraVIS, LAMMPS, Gromacs)

v’ Fast v’ Fast “standard” methods implemented in C++
v’ Can be done on the fly within MD simulation v’ Easy user extension

software (LAMMPS, Gromacs)

v’ Interop with programs written in the scripting
language — processing is easily incorporated into a
higher-level pipeline

* Not extensible without rebuilding the executable

* Interop with other programs only via file output » User-defined extensions will be less performant
than “built-in” operations

Why use Julia programming language?

* Dynamic typing and duck typing — good for exploratory programming and
data analysis

* Type inference: in a carefully-written program, types can be statically
inferred

 JIT compilation — carefully written code can be statically type-inferred and
compiled to fast native code
e Core computations can be implemented in pure Julia
» User-defined data types are as performant as built-in types

* Raw loops are fast - no need to jump through hoops to offload heavy computations
to a specialized numerical library

e Convenient out-of-the-box data containers such as arrays, tuples,
dictionaries, sets, multiple useful data structures provided by third-party
packages

Why use Julia programming language?

* Parallel features:
* Native task-based multithreading

* Distributed-memory computing via built-in Distributed.jl or MPI
bindings
* CUDA programming via CUDA jl

MDProcessing.jl package

* A package for computing properties from MD trajectories
* Written in Julia

e Data format: LAMMPS dump files (XYZ and LAMMPS data files are
planned)

* Built-in analysis functions are defined, user extensions in Julia are
possible

MDProcessing.jl intended workflow

Define a function

that computes the
needed property

MDProcessing.jl intended workflow

Define a function
that computes the
needed property

Load a snapshot

Compute the
property

MDProcessing.jl intended workflow

Define a function
that computes the
needed property

Load a snapshot

Repeat for multiple
. . Compute average
configurations

Compute the
property

Performance assessment

* Test problem: computing the radial distribution ‘" @y

function !l /\‘\‘

. . I

* Benchmarks one of the costly operations in | 1
particle simulation analysis — neighbor search W\ /4

* Algorithmic complexity O(N?) with naive search, A - %
O(NxR_3) with cell list structure

Performance assessment

RDF compute time for different
system sizes (R, = 2.5)

* Test system: Lennard-Jones fluid
* Constant density p = 0.75 10
* Varying system size and cut-off radius |

Time [milliseconds]
)

—o— (Cell linked list |
—— Array '

10° 10° 10°
Number of particles

Time [milliseconds]

1000

e~ RDF computation time (1 thread)
- RDF computation time (2 threads)
-—4— RDF computation time (4 threads)

500

200

100

Performance assessment

Effect of cut-off radius and

multi-threading

- t=17r"% Y 4

50

e RDF clc)mputétion time (OVIITO') |

t=28r1

t=9.5r" K
_ 1.85
———— t=53T P

Cutoff radius

—=—=Ideal scaling
—&— Computation results

1 2 4
Number of threads

Some results

\
i |
10 F . c-05r |
— g o |
o |
= gi(r) T l
A g \
8 \
s oLSE —~ C-CRDF
o \\ — Corrected
. o —2r \
o \\
25t L
~— \
i ~ \
SN \
\\
e 35 - e iarttariar b dvelesiesivat
7.5 10 12.5 15 0 2.5 5 7.5 10 12.5 15
riAl r[A]

Computation of RDFs in molecular systems separated into intra- and intermolecular contributions
Nikitiuk, Salikova, Kondratyuk, Pisarev //J Mol Liq 2022

Some results

1.5 - - r - - - 1 - r - 1 - 1
1.25F .
—~~ = a K
oy VAU
\) ' > I v \’\’m‘t"\
1 B ‘:":_\/\ - N ~ 7
A - < j é‘ | . ‘.\\ ~ v"‘\\/\’/\/ \\/,"\\/\/\/—__7\.
\—:\, \) g I g N L’

! L
— 20750 i

0O O o) I

\ : S

{ \ " \ 'l o [

A K—/ =" - e I
PR . ~ 0.5F .

- I - ’1” L

=L -
X P 0.25F _ .
e Pyrophyllite pore (3 nm)
—-——- Montmorillonite pore (3 nm)
O [L L L | L L L | L L L 1 L L L | L L .

0 0.2 0.4 0.6 0.8 1

L/1

Straight-line fitting and orientational distributions of molecules
Pisarev & Kalinichev // J Mol Liq 2022

Conclusions

e Julia language is suitable for performance-demanding computational
tasks

* Dynamic typing and scripting nature of the language make it
convenient to do exploratory analysis and prototyping new ideas

* Performance-critical parts of the analysis can be optimized in the
same language

* The core functions of MDProcessing.jl are shown to have the
performance comparable to OVITO (written in C++)

* Project repository: https://gitlab.com/pisarevvv/mdprocessing.jl/

