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Forces are computed from an analytical potential 
(force field)

Equations of motion are solved using 
a finite-difference algorithm

Fi = miai

Molecular Dynamics Simulations
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(Muller-Plathe) Muller-Plathe, Phys Rev E, 59, 4894-4898 (1999).
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Example: shear flow

Подробности: Кондратюк Н Д, Писарев В В 
"Теоретические и вычислительные подходы к предсказанию вязкости жидкостей"
УФН, 2023



Molecular Dynamics Simulations
• Computation of thermophysical properties involves

• Structural analysis of instantaneous states
• Averaging properties over a trajectory

• Typical system: 1k – 10M particles

• Typical simulation time: 10 ps – 100 ns (10k – 100M 
time steps)

• Large amount of data per trajectory, analysis becomes 
computationally challenging task



Tools for Simulation

• Primary requirements:
• Fast implementation of standard integration methods, thermostats, force 

fields
• Correctness and robustness

• Simulation packages: Gromacs, LAMMPS, DL_POLY, HOOMD
• Highly optimized for CPU, GPU or both
• Almost necessary to use a programming language with a low-level 

control: C++ or Fortran (maybe Rust, we may see new packages 
released in the next few years)



Trajectory analysis

• The most time-consuming part is already done
• Less pressure on performance

• Two kinds of needs
• Standardized analysis
• Exploratory analysis, development of new structural and dynamic properties



Non-standard properties

• Correlation between interatomic separation and velocity directions

• Characterize the degree of molecular ordering

• Identification of H-bonds
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Existing approaches
Static implementation as an executable program
(TraVIS, LAMMPS, Gromacs)

Scripting language binding (VMD, OVITO)

ü Fast ü Fast “standard” methods implemented in C++

ü Can be done on the fly within MD simulation 
software (LAMMPS, Gromacs)

ü Easy user extension

ü Interop with programs written in the scripting 
language – processing is easily incorporated into a 
higher-level pipeline

• Not extensible without rebuilding the executable

• Interop with other programs only via file output • User-defined extensions will be less performant 
than “built-in” operations
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Middle ground?



Why use Julia programming language?

• Dynamic typing and duck typing – good for exploratory programming and 
data analysis
• Type inference: in a carefully-written program, types can be statically 

inferred
• JIT compilation – carefully written code can be statically type-inferred and 

compiled to fast native code
• Core computations can be implemented in pure Julia
• User-defined data types are as performant as built-in types
• Raw loops are fast - no need to jump through hoops to offload heavy computations 

to a specialized numerical library
• Convenient out-of-the-box data containers such as arrays, tuples, 

dictionaries, sets, multiple useful data structures provided by third-party 
packages



Why use Julia programming language?

• Parallel features:
• Native task-based multithreading
• Distributed-memory computing via built-in Distributed.jl or MPI 

bindings
• CUDA programming via CUDA.jl



MDProcessing.jl package

• A package for computing properties from MD trajectories

• Written in Julia

• Data format: LAMMPS dump files (XYZ and LAMMPS data files are 
planned)

• Built-in analysis functions are defined, user extensions in Julia are 
possible



MDProcessing.jl intended workflow
Define a function 

that computes the 
needed property
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MDProcessing.jl intended workflow

Load a snapshot

Compute the 
property

Define a function 
that computes the 
needed property

Repeat for multiple 
configurations Compute average



Performance assessment

• Test problem: computing the radial distribution 
function
• Benchmarks one of the costly operations in 

particle simulation analysis – neighbor search
• Algorithmic complexity O(N2) with naïve search, 

O(N×Rc
3) with cell list structure



Performance assessment

• Test system: Lennard-Jones fluid
• Constant density 𝜌 = 0.75
• Varying system size and cut-off radius

RDF compute time for different 
system sizes (Rc = 2.5)



Performance assessment
Effect of cut-off radius and multi-threading



Some results
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Computation of RDFs in molecular systems separated into intra- and intermolecular contributions
Nikitiuk, Salikova, Kondratyuk, Pisarev // J Mol Liq 2022



Some results

Straight-line fitting and orientational distributions of molecules
Pisarev & Kalinichev // J Mol Liq 2022



Conclusions

• Julia language is suitable for performance-demanding computational 
tasks
• Dynamic typing and scripting nature of the language make it 

convenient to do exploratory analysis and prototyping new ideas
• Performance-critical parts of the analysis can be optimized in the 

same language
• The core functions of MDProcessing.jl are shown to have the 

performance comparable to OVITO (written in C++)

• Project repository: https://gitlab.com/pisarevvv/mdprocessing.jl/


