Simulating the Black Sea 7Be transport with nested general circulation models

Konstantin Ushakov Olga Dymova Natalia Evstigneeva Sergey Semin Maxim Kaurkin

Nested ocean modelling — a tool for dynamical downscaling

Koromyslov et al., 2017

Nested ocean modelling problems

mathematical

boundary information inconsistent in the two models

- numerical instabilities
- spurious wave reflection
- solution distortion
- eddy speed mismatch

Need for methods of coordinating the model solutions and radiate away the spurious waves

computational

high demands for data exchange frequency

- diurnal cycle
- inertial oscillations
- coupling stability
- shock reduction, etc.

Need for fast and flexible inter-model data exchange services

MHI Black Sea basin general cicrulation model with 7Be lifecycle

$$\begin{split} u_{t} - (\xi + f)v + wu_{z} &= -g\varsigma_{x} - \frac{1}{\rho_{0}}(P' + E)_{x} + (v_{V}u_{z})_{z} + F^{u} \\ v_{t} + (\xi + f)u + wv_{z} &= -g\varsigma_{y} - \frac{1}{\rho_{0}}(P' + E)_{y} + (v_{V}v_{z})_{z} + F^{v} \\ u_{x} + v_{y} + w_{z} &= 0 \\ \varsigma_{t} + \int_{0}^{H} (u_{x} + v_{y})dz = (\Pr - Ev) \\ P &= g\rho_{0}\varsigma + g\int_{0}^{z} \rho dz = g\rho_{0}\varsigma + P' \\ T_{t} + (uT)_{x} + (vT)_{y} + (wT)_{z} &= \kappa^{H}\nabla^{4}T + (\kappa^{T}T_{z})_{z} \\ S_{t} + (uS)_{x} + (vS)_{y} + (wS)_{z} &= \kappa^{H}\nabla^{4}S + (\kappa^{S}S_{z})_{z} \\ \rho &= \rho_{0} + \alpha_{1}^{T}T + \alpha_{1}^{S}S + \alpha_{2}^{T}T^{2} + \alpha^{ST}ST \\ C_{t} + (uC)_{x} + (vC)_{y} + ((w + pW_{s})C)_{z} &= \\ A^{H}\nabla^{4}C + (A^{V}C_{z})_{z} - \lambda C \end{split}$$

- Fortran 90
- C-type staggered grid with 1.6 km resolution, 27 z-levels
- Boussinesq, hydrostatic and incompressibility approximations
- Leap-frog+Matsuno scheme, 96 s timestep
- TVD advection
- Biharmonic horizontal mixing
- Mellor-Yamada 2.5 turbulence
- ERA5 atmospheric forcing
- Climatology rivers and straits
- ARGO+ship profiles and satellite SST assimilation
- Dissolved+adsorbed 7Be
- Wet+dry 7Be deposition
- ERA5+MODIS+cosmic rays 7Be forcing

The Black Sea surface height anomaly and 7Be concentration by the simulation of the basin model, 19 July 2016

MHI high resolution local model

Similar as the basin model, except for:

- 560 m horizontal resolution
- 10 s timestep
- Centered difference advection
- Laplacian horizontal mixing
- Pacanowski-Philander vertical mixing
- Dirichlet open boundary conditions where water inflows
- Where water outflows:
 - Neumann free flow velocity
 - Orlanski conditions for scalars

Orlanski conditions for a scalar field φ in case of zonally oriented boundary

$$\frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial y} = 0$$

Velocity of disturbance transfer

$$c = \begin{cases} \frac{\Delta y}{\Delta t}, & \text{if } -\frac{\Phi_t}{\Phi_y} > \frac{\Delta y}{\Delta t} \\ -\frac{\Phi_t}{\Phi_y}, & \text{if } 0 \le -\frac{\Phi_t}{\Phi_y} \le \frac{\Delta y}{\Delta t} \\ 0, & \text{if } -\frac{\Phi_t}{\Phi_y} < 0 \end{cases}$$

Nested modelling: serial approach

Compact Modelling Framework: designation

Separation of **modelling algorithms** and **service procedures** allows to distribute workload, create transparent code and independently develop both directions.

Services implement:

- Inter-model data exchanges

 at physical interfaces
 - nesting
- Grid-to-grid interpolation
- Models' synchronization
- Pre- and post-processing
- Data assimilation
- Input and output
 - initial conditions
 - external forcing
 - fast diagnostics
 - control points for restart
- etc ...

Model component methods:

- Register
 - model grid
 - parallel decomposition
 - model arrays
 - experiment parameters
- Allocate arrays
- Initialize arrays
- Make time step
- Finalize

Abstract driver approach

CMF: Service-oriented architecture and Global Arrays back-end

Current fields at 3 m,
calculated with
resolutions of 1.6 km
(every 6th arrow shown),
560 m (every 8th arrow
shown) on 8 July 2016

7Be concentration at 2.5m depth by the basin model and nested regional models on 8 July 2016

7Be concentrations by simulation and observations during the cruise of R/V "Professor Vodyanitsky" in July 2016

Thank you!

The work was carried out at MHI RAS with financial support of the Russian Science Foundation (grant No 22-77-10056).

