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2Introduction

• Many modern companies and cloud computing providers offer
increasingly sophisticated pricing plans for their services

• bonuses, promotions and discounts

• multi-tier offers, sustainability bonuses, quantity and volume discounts

• natural groupings by resource types, network connectivity and geographic
distribution

• Resources selection and scheduling algorithms should account for non-
linear pricing models and emerging dependencies between the available
resources both in price and utility criteria



3Saving Plans and Discounts
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The resource requirements for a single service, parallel job or 
workflow are arranged into a resource request:

• n - number of simultaneously reserved computational nodes

• p - minimal performance requirement for each computational node

• V - computational volume for a single node task

• C - maximum total job execution cost (budget)
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Resources Selection Request 
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Allocate a window of computing four nodes for a time T, with requirements on nodes 
performance and total cost. Minimize window start time:

Nodes

Time

Reserved

Reserved

Local task

Reserved Reserved
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Slot:
• Node
• Performance
• Cost
• Start Time
• Finish Time

Window Search Problem
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0-1 Knapsack Slots Subset Allocation

𝑍 = ∑!"#$ 𝑧! 𝑥! → max

∑!"#$ 𝑐! 𝑥! ≤ 𝐶%,

𝑥!∈ 0,1 , 𝑖 = 1. .𝑚

Number n of allocated resources is not 
limited:  𝑛 ∈ [0;𝑚]

Classic 0-1 knapsack problem
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Allocated resources

Limited Size Slots Subset Allocation

𝑍 = ∑!"#$ 𝑧! 𝑥! → max

Number n of simultaneously required resources 
is predetermined

∑!"#$ 𝑐! 𝑥! ≤ 𝐶%,

∑-"#. x- = n,

𝑥!∈ 0,1 , 𝑖 = 1. .𝑚

Candidate resources
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Interval-based Slots Subset Allocation

𝑍 = ∑!"#$ 𝑧! 𝑥! → max

Interval of permissible values [𝑛!"#; 𝑛!$%] is
defined for n

This problem describes a more generic
resources allocation scenario

∑!"#$ 𝑐! 𝑥! ≤ 𝐶,

∑!"#$ 𝑥! ≥ 𝑛%&',

∑!"#$ 𝑥! ≤ 𝑛%(),

𝑥!∈ 0,1 , 𝑖 = 1. .𝑚
Allocated resources

Candidate resources



9Recurrent Solution for Interval Problem

𝑓& 𝑐, 𝑘 = max{𝑓&'((𝑐, 𝑘), 𝑓&'((𝑐 − 𝑐& , 𝑘 − 1) + 𝑧&},

𝑖 = 1, . . , 𝑚, 𝑐 = 1, . . , 𝐶) , 𝑘 = 1, . . , 𝑛!$%
𝑍!$% = max

*
𝑓+ (𝐶, 𝑛)

𝑂 𝑚 ∗ 𝑛!$% ∗ 𝐶



10Real Life Knapsack Example 

https://dev.to/victoria/knapsack-problem-
algorithms-for-my-real-life-carry-on-knapsack-33jj

https://dev.to/victoria/knapsack-problem-algorithms-for-my-real-life-carry-on-knapsack-33jj
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1Volume and Quantity Discounts 

• Volume discount: resource provider offers a
reduced price for a larger quantity of services or
resources
• Google sustained use discounts

• Yandex commited volume of services

• Amazon S3 data transfer

• Oracle Siebel CRM example:

A volume discount is configured as 10% discount for 5-10
items, 20% discount for 11-20 items and 30% discount for 21+
items. When ordering 23 items a customer gets no discount on
items 1-4, a 10% discount on items 5-10, a 20% discount on
items 11-20, and a 30% discount on items 21-23
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2Group Dependencies 

• Locally grouped resources within a single datacenter,
may have greater connectivity, consistency and
greater group performance for data-intensive
workloads

• Multi-cloud strategy can help manage risks, increase
flexibility, optimize costs and avoid vendor lock-in

• We describe and consider aggregated price and
performance benefits in terms of group dependencies

• We study a problem of an efficient multi-cloud
resources selection by taking into account local group
dependencies between them



13Problem Statement

• The set 𝑅 of cloud resources consists of multiple VM instances possibly 
available from different datacenters and resource providers 

• Each group 𝐺& ∈ 𝐺 is a subset of resources 𝑟) ∈ 𝑅 with a common group 
dependency expressed as a special rule for aggregate cost and utility values

• we assume that in a general case the aggregate cost and utility of the selected 
resources may differ from their total sum of cost and utility

• quantity and volume discounts, connectivity benefits, enumerations

• Given the set 𝑅 of VM resources and set 𝐺 of non-intersecting resource groups 
defined over 𝑅, select a subset of [𝑛!"#; 𝑛!$%] of resources with the aggregate 
cost 𝐶, < 𝐶!$% while optimizing the aggregate utility value 𝑈, → max.



14Localized Problems and Allocation Variants 

• The main idea of our approach is to solve resources selection problems for 
each group independently and combine their results in a higher-level recurrent 
solution

• For each group we calculate a Pareto-optimal set of possible allocation variants

• Each allocation variant describes one possible subset of group resources which 
provides aggregate utility 𝑢 for an aggregate cost 𝐶: 

𝑉𝑎𝑟& = {𝑛& , 𝐶& , 𝑢&}

• Pareto-optimal set of variants can be obtained by knapsack algorithms, greedy 
algorithms, heuristics or brute force enumeration



15Group Knapsack Algorithm GKA

• GKA considers groups of resources 𝐺! as enumeration items instead of individual VMs

• Instead of a single pair of characteristics 𝑢! and 𝑐!, each group item 𝐺! provides a list of 
𝑁𝑉! possible resource allocation variants 𝑉𝑎𝑟" = (𝑛", 𝑢", 𝑐")

• GKA iterates over groups 𝐺! ∈ 𝐺 and their variants {𝑉𝑎𝑟"} to calculate the following 
recurrent scheme:

𝑓! 𝑐, 𝑛 = max{𝑓!#$(𝑐, 𝑛), 𝑓%#$(𝑐 − 𝑐", 𝑛 − n&) + 𝑢"},

𝑖 = 1, . . , 𝐺 , 𝑗 = 1, . . , 𝑁𝑉!, 𝑐 = 1, . . , 𝐶'(), 𝑛 = 1, . . , 𝑛'()

• 𝑓! 𝑐, 𝑛 then maintains the maximum possible aggregate utility 𝑈 achievable for a subset 
of 𝑛 VMs combined from different variants from groups {𝐺$, . . , 𝐺!} for a budget 𝑐

• Estimated computational complexity is bounded by  𝑂(𝑁 ∗ n!$% ∗ 𝐶!$%- )
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6Group Knapsack Algorithm GKA
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The simulation study is implemented
in CloudSim v6 environment to
comply with modern cloud resource
provisioning model Physical
resources

• Virtual resources

• Datacenters

• Users and cloud brokers

• Different VM allocation policies

• Pricing models

• Event-based simulation

• Extensions 
• CloudAuction, pricing models

Simulation Environment 
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• Up to 1000 VMs and their characteristics (performance, price, RAM, etc.) are generated 
randomly in each simulation cycle in accordance with pre-defined tier levels

• We consider the following types of the grouping rules:

1) groups without any quantity advantages or discounts

2) groups with significant quantity discounts for up to 30%

3) groups with significant quantity performance bonuses for up to 20%

4) groups with both quantity discounts up to 20% and performance bonuses up to 10%

• For example, for a group of 10 VMs we model quantity discount as 10% for 2-4 items, 20% for 
5-7 items and 30% for 8-10 items purchased

• Types of grouping rules are uniformly assigned and are equally represented in the simulated 
cloud environment 

Simulation Environment Setup



1
9

• Group Knapsack algorithm (GKA) implements proposed approach to optimize VMs 
selection considering the resource groupings

• Brute Force explores all feasible combinations of available VMs and selects the best 
combination considering the resource groupings

• 0-1 Knapsack (IKnapsack) implements VMs selection without information about 
the resource groups; group bonuses and discounts are applied to the resulting 
selection

• Greedy algorithm implements approximation of 0-1 Knapsack problem above; does 
not consider resource groupings; group bonuses and discounts are applied to the 
resulting selection

• CloudAuction is CloudSim extension which implements double auction algorithm; 
group bonuses and discounts are applied to the resulting selection

Considered Algorithms
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0Brute Force Comparison (small environment with 𝑵 = 25 VMs ) 

Requested VMs

• Brute Force and GKA showed the identical best results in all 
simulation runs 

• IKnapsack provided up to 12% less aggregate performance; 
Greedy – up to 50% less

• Brute Force required 1000 times more working time
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1GKA Performance Study (𝒏 = 𝟐𝟎,𝑵 = 1000 VMs ) 

• GKA provides nearly 6% higher aggregate performance compared to IKnapsack and 25% 
higher compared to Greedy

• CloudAuction selects the minimally suitable VMs in terms of price/quality ratio

Budget 𝐶!$%
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2GKA Cost Study (𝑵 = 1000 VMs ) 

• GKA used up to 116% of 𝐶!$% budget, which resulted in 100% after the group discounts
• GKA used 100% of allocated budget resulting in 99% after the group discounts
• Greedy heuristic failed to use even the entire budget 𝐶!$%

Requested VMs
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3GKA Time Study (𝑵 = 1000 VMs ) 

• The working time of the GKA grows faster than that of IKnapsack
• The dependence on 𝐶max is less than quadratic
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• We studied the problem of efficient selection of cloud resources considering their
localized group relations and dependencies

• CloudSim package was used to simulate cloud environments with up to 30% quantity
discounts and and 20% performance bonuses when selecting VMs from a single
datacenter group

• The proposed Group Knapsack algorithm (GKA) provides accurate solution identical
to the brute force, while the advantage over other algorithms reaches 5-25% by the
target optimization criterion

In further research will address and analyze more complex relationships between the
available cloud resources, including non-localized dependencies

Conclusion
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