
Fast and Flexible Framework
for Simulation of Distributed Systems

International Scientific Conference Russian Supercomputing Days 2024

Oleg Sukhoroslov, Artem Makogon

Distributed Systems

Modern systems and applications are increasingly distributed

• High performance, scalability, availability, decentralization, flexibility…

Distributed systems are hard to build, test and operate

• Asynchrony, concurrency, absence of global clock, partial failures, heterogeneity, dynamicity, scale…

How to solve related problems, design and optimize systems, and train new specialists?

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 2

Challenges

Researchers: How to evaluate proposed method? How to compare and becnhmark
alternative methods? How to reproduce results from a paper?

Practitioners: How to evaluate design of a new system or alternative designs?
How does this change improve the operation of existing system? What if …?

Educators: How to expose students to problems that occur in modern systems?

• Analytical models are not sufficient

• Small lab environment has limited capabilities

• Building a (copy of) real-scale system is too expensive

• Results of “in vivo” experiments are not reproducible

• Running experiments on working system is dangerous

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 3

Simulation

The studied system is replaced by a computer model that imitates
the real system (components, processes) with sufficient accuracy

• Real system is not needed

• Inexpensive, moderate resource requirements

• Faster experiments, no real-time

• Full control over environment and reproducibility

• Any system configuration or scenario

• Virtual environment for education purposes

Build simulator from scratch or use an existing solution?

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 4

Existing Solutions

• Simulators tailored for specific application and research domains
• Mostly built by researchers for their projects (and often abandoned later)

• Limited reusability, extensibility and support

• General-purpose simulation frameworks and platforms
• Provide necessary components to develop simulators for different use cases

• Examples: SimGrid, CloudSim, OpenDC

• Still tailored to specific domain (HPC, cloud, data center)

• Lack of convenient and flexible general-purpose programming models

• Performance is not sufficient for large-scale simulations

Domain-agnostic and high-performance simulation framework
with flexible and expressive programming model?

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 5

SimCore

• Discrete-event simulation framework

• Generic event-driven programming model
• Any domain, even beyond distributed systems

• Callback-based and asynchronous programming
• Any execution logic

• No domain-specific abstractions and primitives
• Provided via separate libraries

• Implemented in Rust language
• Performance, resource efficiency, memory safety

• Used to build several domain-specific simulators
• Two are presented on this conference

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 6

Basic Concepts

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 7

Event X
- Timestamp
- Source
- Destination
- Payload

Component B

emits
(via context)

Component A
- Identifier
- Context
- Event Handler

Event Yprocesses
(via handler)

Simulation Model

Simulation State
(clock, events, RNG…)

accesses
(via context)

Simulation Interface

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 8

fn main() {
 // Create simulation with specified random seed
 let mut sim = Simulation::new(123);

 // Create and register components
 let proc1 = Process::new(0.1, sim.create_context("proc1"));
 let proc1_ref = Rc::new(RefCell::new(proc1));
 sim.add_handler("proc1", proc1_ref.clone());
 let proc2 = Process::new(0.1, sim.create_context("proc2"));
 let proc2_ref = Rc::new(RefCell::new(proc2));
 let proc2_id = sim.add_handler("proc2", proc2_ref);

 // Ask proc1 to send request to proc2
 proc1_ref.borrow().send_request(proc2_id);

 // Run simulation until there are no pending events
 sim.step_until_no_events();
 println!("Simulation time: {:.2}", sim.time());
}

Events and Component Definition

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 9

#[derive(Clone, Serialize)]
struct Request {
 time: f64,
}

#[derive(Clone, Serialize)]
struct Response {
 req_time: f64,
}

struct Process {
 net_delay: f64,
 ctx: SimulationContext,
}

impl Process {
 pub fn new(net_delay: f64, ctx: SimulationContext) -> Self {
 Self { net_delay, ctx }
 }

 fn send_request(&self, dst: Id) {
 self.ctx.emit(Request { time: self.ctx.time() }, dst, self.net_delay);
 }

 fn on_request(&self, src: Id, req_time: f64) {
 let proc_delay = self.ctx.gen_range(0.5..1.0);
 self.ctx.emit(Response { req_time }, src, proc_delay + self.net_delay);
 }

 fn on_response(&self, req_time: f64) {
 let response_time = self.ctx.time() - req_time;
 println!("Response time: {:.2}", response_time);
 }
}

Receiving Events via Callbacks

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 10

impl EventHandler for Process {
 fn on(&mut self, event: Event) {
 cast!(match event.data {
 Request { time } => {
 self.on_request(event.src, time)
 }
 Response { req_time } => {
 self.on_response(req_time)
 }
 })
 }
}

• Works well for simple cases by organizing all event processing logic in EventHandler

• Complicates implementation of multi-step activities (steps are spread across multiple functions)

Async Mode

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 11

impl Process { ...
 fn send_request(self: Rc<Self>, dst: Id) {
 self.ctx.spawn(self.clone().send_request_and_get_response(dst))
 }

 async fn send_request_and_get_response(self: Rc<Self>, dst: Id) {
 let send_time = self.ctx.time();
 self.ctx.emit(Request {}, dst, self.net_delay);
 self.ctx.recv_event::<Response>().await;
 let response_time = self.ctx.time() - send_time;
 println!("Response time: {:.2}", response_time);
 }

 async fn process_request(self: Rc<Self>, src: Id) {
 self.ctx.sleep(self.ctx.gen_range(0.5..1.0)).await;
 self.ctx.emit(Response {}, src, self.net_delay);
 }
} impl StaticEventHandler for Process {

 fn on(self: Rc<Self>, event: Event) {
 cast!(match event.data {
 Request {} => { self.ctx.spawn(self.clone().process_request(event.src)) }
 })
 }
}

Combining Advantages of Both Approaches

• Callbacks (EventHandler)
• Describing simple event processing logic

• Receiving events triggering a complex logic

• Async mode
• Describing complex logic with multiple steps and waiting

• Waiting for multiple events simultaneously using join and select primitives

• Selective receive of events by a user-defined key

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 12

Implementation

• ~2000 lines of code in Rust

• Hybrid event storage
• Priority queue by default

• Deque for ordered events

• Async programming support from
Rust standard library and compiler,
primitives from futures crate

• Simulation execution is performed
sequentially using a single thread

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 13

Use Cases

Common libraries: reusable primitives for building simulations
• Models of compute and storage resources, network and power consumption

• Generic model of sharing resource with limited throughput

Domain-specific libraries: complete simulation solutions
• DSLab DAG (scheduling of computations represented as directed acyclic graphs)

• DSLab IaaS (resource management in Infrastructure-as-a-Service clouds)

• DSLab FaaS (resource management in Function-as-a-Service clouds)

• AnySystem (deterministic simulation and testing of distributed systems)

• ClusterSim (modeling of cluster computing workloads and scheduling problems)

• BOSS (simulation of BOINC volunteer computing platform)

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 14

Performance Evaluation: Ping-Pong

• N processes communicate with P peers by exchanging Ping/Pong messages

• Message transmission time is modeled using a fixed delay

• Allows to evaluate raw performance of simulation framework (almost no user code)

• SimCore is 20-40 times faster than SimGrid, can process up to 13M events/second

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 15

Performance Evaluation: Master-Workers
• Simulates a heterogeneous distributed computing system processing T tasks

• Tasks are dynamically distributed among W worker nodes (scheduling takes noticeable time)

• Uses common resource models: compute, storage, network (without or with bandwidth sharing)

• SimCore allows to simulate a system with 1M nodes in several minutes while using 8 GB of RAM

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 16

Conclusion

• Simulation plays an important role in distributed systems research,
development and education

• SimCore framework is aimed to provide a solid foundation for building
simulation models of distributed systems and beyond

• Domain-agnostic, generic event-driven programming model

• Callbacks and async mode to conveniently model any execution logic

• High performance and ability to simulate large-scale systems

• The framework applicability and versatility are demonstrated by building
several common and domain-specific simulation libraries

Code and documentation: https://github.com/systems-group/simcore

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 17

https://github.com/systems-group/simcore

	Слайд 1, Fast and Flexible Framework for Simulation of Distributed Systems
	Слайд 2, Distributed Systems
	Слайд 3, Challenges
	Слайд 4, Simulation
	Слайд 5, Existing Solutions
	Слайд 6, SimCore
	Слайд 7, Basic Concepts
	Слайд 8, Simulation Interface
	Слайд 9, Events and Component Definition
	Слайд 10, Receiving Events via Callbacks
	Слайд 11, Async Mode
	Слайд 12, Combining Advantages of Both Approaches
	Слайд 13, Implementation
	Слайд 14, Use Cases
	Слайд 15, Performance Evaluation: Ping-Pong
	Слайд 16, Performance Evaluation: Master-Workers
	Слайд 17, Conclusion

