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Distributed Systems

Modern systems and applications are increasingly distributed

• High performance, scalability, availability, decentralization, flexibility…

Distributed systems are hard to build, test and operate

• Asynchrony, concurrency, absence of global clock, partial failures, heterogeneity, dynamicity, scale…

How to solve related problems, design and optimize systems, and train new specialists?
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Challenges

Researchers: How to evaluate proposed method? How to compare and becnhmark 
alternative methods? How to reproduce results from a paper?

Practitioners: How to evaluate design of a new system or alternative designs? 
How does this change improve the operation of existing system? What if …?

Educators: How to expose students to problems that occur in modern systems?

• Analytical models are not sufficient

• Small lab environment has limited capabilities

• Building a (copy of) real-scale system is too expensive

• Results of “in vivo” experiments are not reproducible

• Running experiments on working system is dangerous
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Simulation

The studied system is replaced by a computer model that imitates 
the real system (components, processes) with sufficient accuracy

• Real system is not needed

• Inexpensive, moderate resource requirements

• Faster experiments, no real-time

• Full control over environment and reproducibility

• Any system configuration or scenario

• Virtual environment for education purposes

Build simulator from scratch or use an existing solution?
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Existing Solutions

• Simulators tailored for specific application and research domains
• Mostly built by researchers for their projects (and often abandoned later)

• Limited reusability, extensibility and support

• General-purpose simulation frameworks and platforms
• Provide necessary components to develop simulators for different use cases

• Examples: SimGrid, CloudSim, OpenDC

• Still tailored to specific domain (HPC, cloud, data center)

• Lack of convenient and flexible general-purpose programming models

• Performance is not sufficient for large-scale simulations

Domain-agnostic and high-performance simulation framework 
with flexible and expressive programming model?
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SimCore

• Discrete-event simulation framework

• Generic event-driven programming model
• Any domain, even beyond distributed systems

• Callback-based and asynchronous programming
• Any execution logic

• No domain-specific abstractions and primitives
• Provided via separate libraries

• Implemented in Rust language
• Performance, resource efficiency, memory safety

• Used to build several domain-specific simulators
• Two are presented on this conference
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Basic Concepts
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Event X
- Timestamp
- Source
- Destination
- Payload

Component B

emits
(via context)

Component A
- Identifier
- Context
- Event Handler

Event Yprocesses
(via handler)

Simulation Model

Simulation State
(clock, events, RNG…)

accesses
(via context)



Simulation Interface
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fn main() {
    // Create simulation with specified random seed
    let mut sim = Simulation::new(123);
    
    // Create and register components
    let proc1 = Process::new(0.1, sim.create_context("proc1"));
    let proc1_ref = Rc::new(RefCell::new(proc1));
    sim.add_handler("proc1", proc1_ref.clone());
    let proc2 = Process::new(0.1, sim.create_context("proc2"));
    let proc2_ref = Rc::new(RefCell::new(proc2));
    let proc2_id = sim.add_handler("proc2", proc2_ref);
    
    // Ask proc1 to send request to proc2
    proc1_ref.borrow().send_request(proc2_id);
    
    // Run simulation until there are no pending events
    sim.step_until_no_events();
    println!("Simulation time: {:.2}", sim.time());
}



Events and Component Definition
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#[derive(Clone, Serialize)]
struct Request {
    time: f64,
}

#[derive(Clone, Serialize)]
struct Response {
    req_time: f64,
}

struct Process {
    net_delay: f64,
    ctx: SimulationContext,
}

impl Process {
    pub fn new(net_delay: f64, ctx: SimulationContext) -> Self {
        Self { net_delay, ctx }
    }
    
    fn send_request(&self, dst: Id) {
        self.ctx.emit(Request { time: self.ctx.time() }, dst, self.net_delay);
    }
    
    fn on_request(&self, src: Id, req_time: f64) {
        let proc_delay = self.ctx.gen_range(0.5..1.0);
        self.ctx.emit(Response { req_time }, src, proc_delay + self.net_delay);
    }
    
    fn on_response(&self, req_time: f64) {
        let response_time = self.ctx.time() - req_time;
        println!("Response time: {:.2}", response_time);
    }
}



Receiving Events via Callbacks
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impl EventHandler for Process {
    fn on(&mut self, event: Event) {
        cast!(match event.data {
            Request { time } => {
                self.on_request(event.src, time)
            }
            Response { req_time } => {
                self.on_response(req_time)
            }
        })
    }
}

• Works well for simple cases by organizing all event processing logic in EventHandler

• Complicates implementation of multi-step activities (steps are spread across multiple functions)



Async Mode
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impl Process { ...
    fn send_request(self: Rc<Self>, dst: Id) {
        self.ctx.spawn(self.clone().send_request_and_get_response(dst))
    }
    
    async fn send_request_and_get_response(self: Rc<Self>, dst: Id) {
        let send_time = self.ctx.time();
        self.ctx.emit(Request {}, dst, self.net_delay);
        self.ctx.recv_event::<Response>().await;
        let response_time = self.ctx.time() - send_time;
        println!("Response time: {:.2}", response_time);
    }
    
    async fn process_request(self: Rc<Self>, src: Id) {
        self.ctx.sleep(self.ctx.gen_range(0.5..1.0)).await;
        self.ctx.emit(Response {}, src, self.net_delay);
    }
} impl StaticEventHandler for Process {

    fn on(self: Rc<Self>, event: Event) {
        cast!(match event.data {
            Request {} => { self.ctx.spawn(self.clone().process_request(event.src)) }
        })
    }
}



Combining Advantages of Both Approaches

• Callbacks (EventHandler)
• Describing simple event processing logic

• Receiving events triggering a complex logic

• Async mode
• Describing complex logic with multiple steps and waiting

• Waiting for multiple events simultaneously using join and select primitives

• Selective receive of events by a user-defined key
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Implementation

• ~2000 lines of code in Rust

• Hybrid event storage
• Priority queue by default

• Deque for ordered events

• Async programming support from 
Rust standard library and compiler, 
primitives from futures crate

• Simulation execution is performed 
sequentially using a single thread

24.09.2024 Fast and Flexible Framework for Simulation of Distributed Systems (RuSCDays 2024) 13



Use Cases

Common libraries: reusable primitives for building simulations
• Models of compute and storage resources, network and power consumption

• Generic model of sharing resource with limited throughput

Domain-specific libraries: complete simulation solutions
• DSLab DAG (scheduling of computations represented as directed acyclic graphs)

• DSLab IaaS (resource management in Infrastructure-as-a-Service clouds)

• DSLab FaaS (resource management in Function-as-a-Service clouds)

• AnySystem (deterministic simulation and testing of distributed systems)

• ClusterSim (modeling of cluster computing workloads and scheduling problems)

• BOSS (simulation of BOINC volunteer computing platform)
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Performance Evaluation: Ping-Pong

• N processes communicate with P peers by exchanging Ping/Pong messages

• Message transmission time is modeled using a fixed delay

• Allows to evaluate raw performance of simulation framework (almost no user code)

• SimCore is 20-40 times faster than SimGrid, can process up to 13M events/second
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Performance Evaluation: Master-Workers 
• Simulates a heterogeneous distributed computing system processing T tasks

• Tasks are dynamically distributed among W worker nodes (scheduling takes noticeable time)

• Uses common resource models: compute, storage, network (without or with bandwidth sharing)

• SimCore allows to simulate a system with 1M nodes in several minutes while using 8 GB of RAM
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Conclusion

• Simulation plays an important role in distributed systems research, 
development and education

• SimCore framework is aimed to provide a solid foundation for building 
simulation models of distributed systems and beyond

• Domain-agnostic, generic event-driven programming model

• Callbacks and async mode to conveniently model any execution logic

• High performance and ability to simulate large-scale systems

• The framework applicability and versatility are demonstrated by building 
several common and domain-specific simulation libraries

Code and documentation: https://github.com/systems-group/simcore
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