
A study of a composable approach to parallel
programming for many-core multiprocessors

September 24, 2024 | Moscow

Vladimir Bakhtin, Nikita Kataev, Alexander Kolganov, Dmitry Zakharov,

Alexander Smirnov, Mikhail Kocharmin, and Anton Malakhov
Keldysh Institute of Applied Mathematics RAS

Russian Supercomputing Days 2024
International Scientific Conference

2 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Rising Problem
Hardware
 A single-core performance improvement per year has dropped significantly.
 The road to higher performance is via the growth of the number of processor cores and

the number of hardware threads per core.

Software
 The number of threads participating in the work increases.
 Each thread tends to execute smaller work portion.
 The thread arbitration and synchronization overheads rise.
 Available parallelism is limited by the Amdahl’s law.

As a result, the gap between the parallel application performance and the peak performance of
multiprocessors is getting wider.

More parallelism is required!

Possible sources of additional parallelism:
 Exploitation of nested parallelism.
 Execution of multiple different applications in parallel.

However, the direct use of OS-level threads to execute abundant parallelism often results in severe
performance degradation by oversubscription of threads.

→

→

→

→

→

→

→

→

O
ve

rh
ea

d

W
o

rk

O
ve

rh
ea

d

H
u

n
d

re
d

s
o

f
th

re
a

d
s

…

Kunpeng 920 (up to 192 threads)
Intel (up to 288 threads)
AMD (up to 768 threads)

Typical Frequency ~3.0 GHz

→

→ O
ve

rh
ea

d

W
o

rk

O
ve

rh
ea

d

Te
n

s
o

f
th

re
a

d
s

…



!

!

→ Serial

→

→ Parallel 1

→

→ Parallel 2

→

→

→

H
u

n
d

re
d

s
o

f
th

re
a

d
s

…

→

→

→

→

→

→

→

→ Serial

…

P
a

ra
lle

l 1

P
a

ra
lle

l 2

Time

3 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Composability Problem

We explore parallel programming patterns that pose significant problems for an application programmer and runtime
developer to transparently replace OS-level threads with user-level threading and tasking abstractions.

We examine the performance different parallel programming models provide when facing oversubscription and other
composability issues.

Different flexible models exist that implement lightweight threading and tasking runtimes:

 oneAPI Threading Building Blocks (TBB) – a C++ library that hides explicit OS-level threads under the higher level
interface based on explicit tasks , however it suffers from inability to directly control program execution at low-level.

 Argobots - lightweight, low-level threading and tasking framework which proposes a rich set of controls, but requires
a deep knowledge to achieve the best parallel program performance,

 explicit OpenMP tasks (task and taskloop constructs) – it is not flexible enough to provide various task orchestration
strategies as TBB and Argobots do.

→

→

→

→

→

→

→ Parallel 1 →

→ Parallel 2 →

→ Parallel 3 →

→ Parallel 4 →

C
P

U
s O

S-
th

re
a

d
s

Oversubscription

Two levels of
parallelism lead to P*P
OS-level threads in the

worst case (P – the
number of CPUs).

→ Parallel 1

→ Parallel 2

→ Parallel 3

→ Parallel 4 O
S-

th
re

a
d

s

C
P

U
s

User-level threads

Fine-grain space-time composition

Different ways to
implement user-level

threads and fine-grain
time-space

composition.

4 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

The Prototype of the Compiler Infrastructure
Converter is a Clang-based source-to-source translator that generates parallel kernels and
replaces OpenMP directives with runtime library function calls.

Supported OpenMP constructs:
 parallel, parallel for and critical directives,
 reduction, private and num_threads clauses,
 omp_set_num_threads(), omp_get_max_threads(), omp_get_num_threads(),

omp_get_thread_num(), omp_get_num_procs(), omp_in_parallel() functions.

A driver that simplifies an original program compilation and execution according to a chosen
underlying programming model.

 Converter does not depend on the target runtime library
 Driver options allow us to choose a target runtime library at a link time.

Compiler is a normal compiler: GCC, Clang, etc.

We implemented 4 runtime libraries based on TBB, Argobots, normal OpenMP with explicit
tasks (task and taskloop constructs).

The driver use environment variables to manage program execution:
 CP_NUM_STREAMS, CP_NUM_THREADS_HINT, CP_STACK_SIZE, CP_PARTITIONER_KIND,

CP_NUM_NUMAS, CP_NUMAS, CP_STREAM_BIND, CP_THREAD_BIND, etc.

Subset
of

OpenMP
Converter

Composable
runtimes

+
Object files

Compiler Executable

Driver

 ./cpt c –tbb file.c –o file.tbb.out

 CP_NUM_STREAMS=28

CP_NUM_THREADS_HINT=10000

 ./cpt run file.tbb.out

5 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

The NAS Parallel Benchmarks 3.3

Application Description Features

B
as

ic
 k

er
n

el
s

EP (Embarrassingly Parallel) generates a large number of independent Gaussian random
deviates using the Marsaglia polar method

highly intensive computations on independent data

O
n

e
le

ve
l o

f
p

ar
al

le
lis

m

MG (Multi Grid) approximates the solution for a three-dimensional discrete
Poisson equation using the V-cycle multigrid method

memory bound, conjunction of short- and long-distance
communication patterns

FT (Fast Fourier Transform) solves a three-dimensional partial differential equation (PDE)
using the fast Fourier transform (FFT)

long-distance memory accesses

CG (Conjugate Gradient) approximates the smallest eigenvalue of a large sparse
symmetric positive-definite matrix using the inverse iteration
method together with the conjugate gradient method

a lot of irregular accesses, a lot of floating point reduction
operations at each iteration

IS (Integer Sort) performs an integer sorting among a sparse set of numbers. By
default, it implements the Bucket-Sorting algorithm

memory bound, integer computations

Si
m

u
la

te
d

ap

p
lic

at
io

n

p
ro

gr
am

s BT (Block Tridiagonal) solve a synthetic system of nonlinear PDEs (three-dimensional
system of Navier-Stokes equations for compressible fluid or gas)
using three different iterative methods

different amount of parallel computations that are limited
with loop-carried data dependencies
 SP (Scalar Pentadiagonal)

LU (Lower-Upper)

M
u

lt
i z

o
n

e BT-MZ re-implements three simulation application programs in a way
that in each program a three-dimensional mesh is divided into
two-dimensional horizontal tiling of three-dimensional zones
 Tw

o
 le

ve
ls

o

f
p

ar
al

le
lis

m

SP-MZ

LU-MZ

NPB are widely used in many research activities for evaluating specific architectures and systems and to evaluate automatic and semi-
automatic parallelization techniques.

6 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Transformation of the NAS NPB
1. We examined C++ versions (original OpenMP versions) of benchmarks

obtained from the original Fortran versions.

2. We moved each parallel pattern in a separate parallel region to satisfy
our compiler requirements and to provide a runtime with more ways
to schedule execution of different parallel patterns (composable
OpenMP versions).

3. We encapsulate all data and functions accessed in each benchmark into
a C++ class with a single public function that executes the benchmark. It
allows us to execute multiple benchmarks from a single program in a
composable way.

4. We remove load balancing features implemented in NPB-MZ
benchmarks to estimate the capability of different runtimes to perform
load balancing implicitly.

5. We replace pipelining approach in LU benchmark with hyperplane
algorithm to remove extra synchronization between parallel threads,
while preserving loop-carried data dependencies over all three array
dimension.

6. The IS benchmark imposes restrictions on possible work distribution
between threads from different parallel regions. We perform the
scheduling manually and determine the relation between the thread
index and the indexes of keys to sort.

#pragma omp parallel

{

 #pragma omp for

 ...

}

#pragma omp parallel for

{

 ...

}

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4

𝑡1 𝑡2 𝑡3 𝑡4

𝑡2 𝑡3 𝑡4
𝑡3 𝑡4

l - M + 3 l + 1

M

N

Thread 0 Thread 1 Thread 2 Thread 3

1 1 1 0

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8

𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8

𝑡6 𝑡7 𝑡8

isync

i

Pipeline, original implementation, 2D example Hyperplane, 2D example
for (int l = 1; l < M + N – 4; ++l) {

 #pragma omp parallel for

 for (int j = max(1, l - M + 3); j < min(l + 1, N - 1); ++j) {

 int i = l – j + 1;

 a[i][j] = (a[i - 1][j] + a[i + 1][j] + a[i][j - 1] + a[i][j + 1]) / 4;

 }

}

#pragma omp parallel

{

 #pragma omp for schedule (static)

 ...

}

#pragma omp parallel

{

 #pragma omp for schedule (static)

 ...

}

#pragma omp parallel

{

 // Calculate loop subrange based

 //on thread id and number of threads

}

#pragma omp parallel

{

 // Calculate loop subrange based

 //on thread id and number of threads

}

2

5

6

7 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Experiments
2 multicore platforms

 Xeon – 2 x Intel Xeon CPU E5-2680 v4 @ 2.4 GHz (x86 architecture, 2 OS-level threads
per core, 56 OS-level threads in total), 64 GB of main memory, Ubuntu 22.04.4 LTS.

 Kunpeng – 2 x Kunpeng 920 CPU @ 2600 GHz (aarch64 architecture, 1 OS-level thread
per core, 48 OS-level threads in total) with 512 GB of main memory, CentOS Linux 8.

Compilation and execution environment

 Miniconda package manager, TBB 2021.11, GCC 13.2.0 with –O3 option.

Problem sizes

 Mostly class A to simulate the decrease of the work portion per thread.
 Class C was also used for some experiments.

Correctness check

 Built-in verification functions implemented as parts of NPB and NPB-MZ.

Time measurement

 NPB-MZ – built-in functions that enclose only computational parts of the benchmarks
and exclude data preparation and data verification steps from the evaluation.

 NPB – the overall execution time is measured because we execute multiple benchmarks
simultaneously to explore the performance of the composable execution.

Class
BT-MZ LU-MZ SP-MZ Aggregated

grid Size no.zones no.iters no.zones no.iters no.zones no.iters

A 4x4 200 4x4 250 4x4 400 128x128xx16

B 16x16 200 4x4 250 16x16 400 480x320x28

Name Parameter Class A Class C

CG

no. of rows 14000 150000

no. of nonzeros 11 15

no. of iterations 15 75

eigenvalue shift 20 110

EP no. of random pairs 228 222

FT
grid size 256x256x128 512x512x512

no. of iterations 6 20

IS
no. of keys 223 227

key max. value 219 223

MG
grid size 256x256x256 512x512x512

no. of iterations 4 20

BT

grid size 64x64x64 162x162x162

no. of iterations 200 200

time step 0.0008 0.0001

LU

grid size 64x64x64 162x162x162

no. of iterations 250 250

time step 2.0 2.0

SP

grid size 64x64x64 162x162x162

no. of iterations 400 400

time step 0.0015 0.00067

MG
EP

SP

8 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Composable Execution of NPB

LU
BT

CG FT IS

BT

LU

SP

MG

SP

SP

CG

EP

FT

IS

…

job

// Successive execution of all jobs

for (auto &job : list_of_jobs) {

 // Parallel execution of all benchmarks in a job

 // - first level of parallelism.

 auto t_start = time);

 #pragma omp parallel for

 for (auto &benchmark : job) {

 // Parallel execution of each benchmark

 // - second level of parallelism

 benchmark.execute();

 }

 auto t_job = time() – t_start();

}

𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 = 𝑇𝑏
𝑏∈ 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑠

𝑆 =
𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 − 𝑇𝑗𝑜𝑏

𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒
∗ 100%

for (auto &benchmark : job) {

 auto t_start = time);

 benchmark.execute();

 auto t_b = time() – t_start();

} .vs

0

10

20

30

40

50

60

70-50%

-30%

-10%

10%

30%

50%

70%

90%

1
12

1
24

1
36

1
48

1
60

1
72

1
84

1
96

1
10

81
12

01
13

21
14

41
15

61
16

81
18

01
19

21
20

41
21

61
22

81
24

01
25

21
26

41
27

61
28

81
30

01
31

21
32

41
33

61
34

81
36

01
37

21
38

41
39

61
40

81
42

01
43

21
44

41
45

61
46

81
48

01
49

21
50

41
51

61
52

81
54

01
55

21
56

41
57

61
58

81
60

01
61

21
62

41
63

61
64

81

Speedup CP TBB Speedup CP OpenMP Speedup Origin OpenMP Number of BT

Number of LU Number of SP Number of CG Number of EP

Number of FT Number of MG Number of IS

SP

SP

CG

EP

EP

IS

LU

LU

SP

CG

EP

Time (sec.) 𝑇𝑗𝑜𝑏 𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒

Class A, TBB based runtime, Kunpeng
48 OS-level threads, auto user-level threads

To calculate 𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 we have used three versions of benchmarks:
original OpenMP , composable OpenMP, one of our composable runtime.

S EP

9 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Independent Evaluation of each Benchmark on Different Runtimes

BT LU SP CG EP FT MG IS

Origin Serial 78,08 47,95 43,74 1,95 33,02 7,81 3,88 1,81

Origin OpenMP 78,22 49,61 43,49 1,96 33,03 7,81 3,78 1,82

CP Serial 79,70 58,20 49,05 1,95 34,15 7,54 3,90 1,83

CP OpenMP 80,48 59,90 44,82 2,01 34,46 7,77 3,88 1,81

CP TBB 78,84 60,60 45,76 2,22 34,39 8,45 3,98 1,80

CP Argobots 80,79 59,30 47,75 2,01 34,70 7,79 4,50 1,80

CP Taskloop 78,75 59,41 45,48 1,99 34,41 8,05 4,04 1,80

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

Ti
m

e
(s

e
c.

)

Origin Serial Origin OpenMP CP Serial CP OpenMP CP TBB CP Argobots CP Taskloop

0,10

1,00

10,00

100,00

BT LU SP CG EP FT MG IS

Origin OpenMP, 48 CP TBB, auto CP TBB, 48x48 CP Argobots, 48x48

CP Taskloop, 48x48 CP OpenMP, 0x48 CP OpenMP, 1x48 (passive) CP OpenMP, 1x48 (active)

1 OS-level thread

K
u

n
p

en
g

48 OS-level thread

Sp
ee

d
u

p

1. The measurements illustrate that a chosen runtime almost does not affect
the execution time if only a single thread is used.

2. The use of hyperplane algorithm instead of pipelining in the composable
version of LU makes this benchmark slowdown noticeably

3. Results for standalone execution of each benchmark highlights the
underutilization issue because a speedup never reaches the available number of
hardware threads.

4. The natural OpenMP runtime shows drastic degradation even if only one OS-
level thread explicitly set to execute an outer level of parallelism.

5. The TBB based runtime provides almost the same performance as the native
OpenMP while the Argobots library and the OpenMP taskloop construct degrade
the performance in case of LU and CG benchmarks due to:

 mutex-based implementation of reduction in Argobots and equal
number of threads for different work sizes,

 ineffective work arbitration and synchronization strategy implemented
in OpenMP taskloop based runtime.

 2
1

3
~x31

4 4

 5

 5

* The CP abbreviation means the composable version of the benchmark. For speedup results the
number of user-level threads at each level is shown for each runtime except benchmarks compiled with
the natural OpenMP runtime. In that case the number of OS-level threads at each level is specified, and
thread affinity is enabled and it is set to OMP_PROC_BIND=spread,close. We also manually set the
OMP_WAIT_POLICY environment variable to active or passive values. If the number of threads is zero, a
corresponding level of parallelism is disabled and associated parallel directive is removed from sources.

10 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Composable Execution of NPB
P

la
tf

o
rm

R
u

n
ti

m
e Threads

Jobs
Max. number of benchmarks in a job

Time
(h.)

Speedup to successive execution

Self CP OpenMP Origin OpenMP

OS User BT LU SP CG EP FT MG IS Total Min Max Total Min Max Total Min Max

K
u

n
p

en
g

TBB 48 Auto 6560 2 2 2 2 2 2 2 2 19.38 34% -2% 65% 30% -67% 62% 13% -147% 70%

TBB 48 48x48 6560 2 2 2 2 2 2 2 2 20.08 33% -56% 63% 28% -71% 61% 10% -148% 69%

Taskloop 48 48x48 6560 2 2 2 2 2 2 2 2 39.67 29% -5% 72% -43% -217% 60% -77% -598% 68%

Argobots 48 48x48 2186 2 2 2 2 2 2 2 2 14.2 59% -36% 81% -54% -632% 58% -92% -1515% 67%

X
eo

n
 TBB 56 56x56 6560 2 2 2 2 2 2 2 2 42.83 8% -51% 41% -15% -121% 37% -37% -121% 40%

Taskloop 56 56x56 6560 2 2 2 2 2 2 2 2 41.46 4% -16% 49% -12% 37% -113% -33% 40% -115%

// Successive execution of all jobs

for (auto &job : list_of_jobs) {

 // Parallel execution of all benchmarks in a job

 // - first level of parallelism.

 auto t_start = time);

 #pragma omp parallel for

 for (auto &benchmark : job) {

 // Parallel execution of each benchmark

 // - second level of parallelism

 benchmark.execute();

 }

 auto t_job = time() – t_start();

}

𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 = 𝑇𝑏
𝑏∈ 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑠

𝑆 =
𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 − 𝑇𝑗𝑜𝑏
𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒

∗ 100%

for (auto &benchmark : job) {

 auto t_start = time);

 benchmark.execute();

 auto t_b = time() – t_start();

} .vs The drop of the performance of some benchmarks in
comparison with the performance of the original OpenMP
versions impacts the speedup if the baseline is a successive
execution of OpenMP versions. However, the TBB based
runtime allows us to achieve up to the 70% speedup
improvement even in that case.

Table. Comparing composable execution of NPB class A

11 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Execution Time of Composable Versions of NPB-MZ on Kunpeng

0,00

20,00

40,00

60,00

80,00

1 2 3 4 6 8 12 16 24 32 48

TBB Taskloop Task Argobots OpenMP

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0,00

20,00

40,00

60,00

80,00

B
T-

M
Z

LU
-M

Z
SP

-M
Z

class A

Ti
m

e
(s

ec
.)

OS-level threads

In case of the native OpenMP runtime an optimal number of OS-level threads
are manually selected at each level of parallelism.

1. In case of a single thread the execution time is very close and neither
programming model gains an advantage.

2. The LU-MZ and SP-MZ creates 16 zones of equal sizes and our experiments
shows that an outer level of parallelism is enough to achieve the good
performance and the benchmark versions based on the native OpenMP
runtime stop scaling around 16 OS-level threads.

3. For LU-MZ and SP-MZ the TBB based implementation of the nested
parallelism allows us to achieve slightly better performance if more than
16 OS-level threads are used.

4. The measurements indicate that in case of BT-MZ the TBB based runtime
allows as to achieve twice the performance of the OpenMP version on 48
OS-level threads.

5. The better scaling in case of Argobots based runtime is the result of
lightweight structure of Argobots user-level threads in comparison to
OpenMP explicit tasks.

6. In case of runtime based on OpenMP task constructs a single thread in a
team create each task in a sequential loop. Thus this runtime stop scaling
with the least number of threads the runtime based on OpenMP taskloop
constructs.

1

1

1

2

3

3

4

5

6

12 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Execution Time of Composable Versions of NPB-MZ on Kunpeng

0,00

20,00

40,00

60,00

80,00

1 2 3 4 6 8 12 16 24 32 48

TBB Taskloop Task Argobots OpenMP

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0,00

20,00

40,00

60,00

80,00

B
T-

M
Z

LU
-M

Z
SP

-M
Z

class A

Ti
m

e
(s

ec
.)

OS-level threads

0

200

400

600

800

1000

1200

1 2 3 4 6 8 12 16 24 32 48

TBB Taskloop Task Argobots OpenMP

class C

0

500

1000

0

500

1000

13 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Comparing the Original and Composable Versions of NPB-MZ (class A)

40,61 38,84

67,81 66,56

22,06 22,8

43,18 42,27

19,5 19,76

36,2
33,54

0

10

20

30

40

50

60

70

80
Fo

rt
ra

n

C
, o

ri
gi

n
al

C
, o

ri
gi

n
al

C
, c

o
m

p
o

sa
b

le

Fo
rt

ra
n

C
, o

ri
gi

n
al

C
, o

ri
gi

n
al

C
, c

o
m

p
o

sa
b

le

Fo
rt

ra
n

C
, o

ri
gi

n
al

C
, o

ri
gi

n
al

C
, c

o
m

p
o

sa
b

le

Xeon Kunpeng Xeon Kunpeng Xeon Kunpeng

BT-MZ LU-MZ SP-MZ

3,07 3,18 3,23

6,62

2,03
1,59 1,67

2,13
2,66 2,51

1,37 1,44

2,39 2,13 2,04

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

Fo
rt

ra
n

, 1
6x

4

C
,o

ri
gi

n
al

, 1
6x

4

C
, o

ri
gi

n
al

,4
x8

C
, c

o
m

p
o

sa
b

le
, O

pe
n

M
P

, 6
x8

C
, c

o
m

p
o

sa
b

le
, T

B
B

, 4
8

Fo
rt

ra
n

, 1
6x

1

C
,o

ri
gi

n
al

, 1
6x

1

C
, o

ri
gi

n
al

,1
6x

2

C
, c

o
m

p
o

sa
b

le
, O

pe
n

M
P

, 1
6x

1

C
, c

o
m

p
o

sa
b

le
, T

B
B

, 3
2

Fo
rt

ra
n

, 1
6x

1

C
,o

ri
gi

n
al

, 1
6x

1

C
, o

ri
gi

n
al

,1
6x

2

C
, c

o
m

p
o

sa
b

le
, O

pe
n

M
P

, 1
6x

1

C
, c

o
m

p
o

sa
b

le
, T

B
B

, 4
8

Xeon Kunpeng Xeon Kunpeng Xeon Kunpeng

BT-MZ LU-MZ SP-MZ

0

1

2

3

4

5

6

7

C, original,4x8 C, composable,
OpenMP, 6x8

C, composable, TBB, 48

Ti
m

e
(s

ec
.)

Th

e
b

es
t

co
n

fi
g

u
ra

ti
o

n

 Comparing the best performance of the original and
composable versions of BT from NPB-MZ class A on
Kunpeng 920.

 The different numbers of OS-level threads at each level
of parallelism has been explored for OpenMP
programs.

 Up to the maximum number of OS-level threads has
been explored for TBB-based runtime.

Manual load balancing.
Manual number of threads

tuning.

Automatic load balancing.
Automatic number of parallel

workers tuning.

No load balancing.
Manual number of threads

tuning.

BT-MZ, class A, original. Execution time (sec.) using
different number of OS-level threads at each level of

parallelism.

Ti
m

e
(s

ec
.)

O

p
en

M
P

, 1
 O

S-
le

ve
l t

h
re

a
d

Ti
m

e
(s

ec
.)

th

e
b

es
t

co
n

fi
g

u
ra

ti
o

n

The optimal number of OS-level threads at each level of
parallelism has been found in a manual way.

1. The execution time of different versions obtained using
OpenMP running 1 OS-level thread are very close.

2. The C versions directly translated from the Fortran versions
scales better on the Kunpeng platform.

3. The composable versions compiled with the native OpenMP
runtime provide lower performance due to each parallel
loop is enclosed into a separate parallel region.

4. In LU-MZ we use a hyperplane algorithm to preserve the
data dependencies instead of the pipelining strategy applied
to the original benchmark. Thus, every time new hyperplane
is processed a thread encounters a parallel construct.

1 2

 2 3, 4

14 | 15 dvm-system.org Russian Supercomputing Days ▪ Moscow ▪ 2024

Conclusion
We are looking for the way to overcome scalability wall and we believe that our research may affect the way how
future multithreaded libraries should be organized.

 Parallel programming models directly build on top of OS-level threads is inadequate in the case of
oversubscription and should be transparently replaced with lightweight approaches that rely on user-level
threads.

 The implementation of runtimes of well-known models, such as OpenMP, can be changed to efficiently handle
composable parallelism. However, it still may require an application programmer to update their sources to
achieve better performance.

We can increase the throughput by an average of 40% using existing hardware and software (with little changes).

Future work should be done to better estimate the influence
of NUMA architecture, the task binding and the better
number of threads per task on the application performance.

Influence of manual NAS NPB benchmark binding
on the composable execution performance*.

*The higher is better.
See details in future papers.

Possible further
improvement

http://dvm-system.org

Thank you for your attention

dvm@keldysh.ru

E-mail URL

Russian Supercomputing Days 2024

