Russian Supercomputing Days
PAOYS

Efficient Allocation of Resources under Group
Dependencies and Availability Uncertainties

Victor Toporkov

and Artem Bulkhak

National Research University “Moscow Power Engineering Institute”

RuSCDays - 2025

HPCS Scheduling Problem

Nodes *
1
)
:
4 Local task
W |
» Time

* HPCS and Virtual Organizations should implement efficient procedures for job-flow scheduling,
execution and the resources allocation

RuSCDays - 2023

Job Resource Request and Parallelization

The resource requirements for a single parallel job execution are
arranged into a resource request:

* n - number of simultaneously requested computational nodes

* p - minimal performance requirement for each computational
node

* V- average computational volume for a single node process

» C- maximum total job execution cost (budget)

Allocate n simultaneously available resources for a time interval
T with a total cost constraint C

RuSCDays - 2025

T = V/pmin

l
)

&

)
|

Availability-based Scheduling

* Traditional models consider job-flow scheduling problem in a deterministic way

« About 20% of Grid computational nodes exhibit truly random availability intervals

* In this work the uncertainties are modeled as resources availability events and
probabilities: a natural way of machine learning and statistical predictions
representation

* Resources availability predictions may originate from:

* Historical data

* Linear regression models

* Expert and machine learning systems
* Expert and user estimations

RuSCDays - 2025

Job Scheduling Under Uncertainties

85 133 200 400 545 600 800844 921 1000 12001250 1400 t

Each single node is characterized with a set of availability events

* Availability event can be described with a random variable distribution

The node availability probability P, during the whole interval [depends on the occupation events
In order to execute a parallel job a set of nodes (a window) should be allocated simultaneously

We want to maximize a total window availability probability

RuSCDays - 2025 6

Window Availability Calculation

The total window availability probability may be calculated as follows:
n

T‘.
P} = ‘ ‘Pa‘ — max,

i
Allocate a set of 2 nodes with a total cost constraint:

?:1 Ci S C

Dynamic Programming solution (0-1 multiplicative knapsack):

fi(c,v) = max{f;_1(c,v), fj—1(c —¢c;,v — 1) = P;}

j= 1,..,m,C — 1;--)C1v= 1""“”

RuSCDays - 2025

Group Dependencies between the Resources

In general, the resources and their
utilization events are not independent

Groups G; € G represent subsets of
resources sharing common properties
Group examples:

« Resources of a parallel job share common
utilization events

« Discount provided for resources selected from
the same vendor

« Performance benefits for matching resources

« Geographical location and connectivity-based
groups

D=1

Mips = 3.0
Ram = 1.86
Price = 2.28
Hwindex = 0.12

D=2
Mips=7.0
Ram = 5.77
Price =9.75
Hwindex = 0.65

D=3

Mips =11.0
Ram = 6.87
Price = 15.07
Hwindex = 0.91

D=4

Mips = 3.0
Ram = 1.75
Price =243
Hwindex = 0.12

ID=5

Mips = 3.0
Ram = 2.34
Price = 2.85
Hwindex = 0.18

ID=6

Mips =5.0
Ram = 3.12
Price = 4.53
Hwindex = 0.32

RuSCDays - 2023

s
P

AN

49511 58800 6525

!
68 164 200 38400 457 579 500

8

Group Dependencies Formalization

PG

1 is a common availability probability for group G; (during interval [)

 If at least one resource from group G; is selected for window W, then the

common probability PaLGi is included into total availability P;":

.
Py =|[pR
i

where nn* is a number of diverse groups used for the window W

Total cost constraint: Y,i, ¢; < C

RuSCDays - 2025 9

Branch and Bounds Algorithm to Address Group
Dependencies

e We implement branch-and-bounds approach to consider resources groupings for
the resources’ selection

* Max-Heap data structure is maintained for the

solution tree

* For each solution node we maintain:

G* set of groups to be included in the solution

G~ set of groups to be excluded from the solution

Array representation

e Other groups

7 3 3
[100] 193617 3 [2s] 1] 2] 7]
* (Upper estimate) criterion value P}” o 1 2 3 4 5 6 7 8

ITTTT

RuSCDays - 2025 LU

Group Knapsack Algorithm (GKA)

. GKA considers groups of resources G; as enumeration items instead of individual VMs

. Instead of a single pair of characteristics p; and c;, each group item G; provides a list of
NV; possible resource allocation variants Var; = (n;, uj, ¢;)

. GKA iterates over groups G; € G and their variants {Var;} to calculate the following
recurrent scheme:

filc,n) = max{f;_1(c,n), fi-1(c — ¢;,n — ;) + w;},
i=1,.,1G,j=1.. . NVyc=1,..,Coomon =1, .., Nmax

. f:(c,n) then maintains the maximum possible aggregate utility U achievable for a
subset of n VMs combined from different variants from groups {G1, .., G;} for a budget
c

. Estimated computational complexity is bounded by O(N * npyax * Cipax)

RuSCDays - 2025 11

Group Knapsack Algorithm (GKA)

Group G4

-

.

Res 1

Res N1

~N

T

J

-

~
(1' pclrcl)
(2! pGl' 1 + CZ) >

(nkl' pGl' Zci)

Ngkq

/

Group G,

-

Res 1

Res 2

~

| pr|lwW[IN|IKLR]|O

w | w|lw|w

Wl w| w|lw|lk

[OO || W]

%)

(11 szrcl)
< (2) szl C1 + CZ)

e

(nk2: pGZI Zci)
o _/

~

\

12

Algorithms for Analysis and Comparison

* Brute Force provides exact solution but usually not feasible for N > 35 resources

* Knapsack Single implements resources allocation for P}Y = [[}' p; = max without any
knowledge of the resources’ groupings (multiplicative knapsack)

* Exact Branch and Bounds (Tree) implements the presented branch-and-bounds approach
with Knapsack Single for intermediate calculations, thus providing exact solution in
integers

* Greedy Branch and Bounds (Tree Greedy) implements the same branch-and-bounds
approach but uses more performance-efficient greedy approximation for the intermediate

calculations

* Group Knapsack (GKA) implements group 0-1 knapsack with account for group
dependencies

RuSCDays - 2025 13

Execution Time

selectingn € |1; 22] from N = 22 resources

t,ms
1600

1400
1200
1000
800
600
400

200

f
0 2 4 6 8 10 12 14 16 18 20 22

-®-BruteForce -#-GKA/Single/Tree Greedy Nreq

RuSCDays - 2025

Brute Force, GKA and Branch-n-Bounds
generate exact solution

Brute Force execution time shows its
combinatorial nature

Brute Force took 10,000 times longer to
execute compared to the branch-and-
bounds and GKA in a simplified
environment with N = 22 resources

14

Availability Probability
selectingn € [1; 30] from N = 200 resources

P
1
0,95
GKA and Branch-n-Bounds
%3 generate exact solution
0,85
0,8 . :
Other algorithms provide 5-18%
0,75 lower values
0,7
0,65
0,6
0 5 10 15 20 25 30

-o-GKA/Tree Knapsack - -Tree Greedy -&-Single Nreq

RuSCDays - 2025 15

Execution Time
selectingn € [1; 30] from N = 200 resources

t,ms . .
1100 Branch-n-Bounds execution time
1000 demonstrates dramatic growth of the
900 . .
decision tree
800
700
600
500 GKA is at least 100 times faster to solve
400 the same problem
300
200
100
0 e —a
0 5 10 15 20 25 30

-e-Tree Knapsack -&-GKA/Single/Tree Greedy Nreq

RuSCDays - 2025 16

Availability Probability
selectingn € [1; 80] from N = 1000 resources

P
1
0 05 GKA generates exact solution
increasingly better compared to
0,9 Knapsack
0,85
0,8
0,75
0,7
0 10 20 30 40 50 60 70 80
-#-GKA -&-Single Nreq

RuSCDays - 2025 17

Execution Time
selectingmn € |1;80] from N = 1000 resources

;,1225 GKA and Knapsack execution times and

complexity are comparable
2100

1800

1500 Algorithms exceed 1 second execution

1200 time for the following problem sizes:

Knapsack:n = 80 from N = 1000

900

600 GKA:mn = 65 from N = 1000
300 BB:n = 30 from N = 200
0 o‘ 1‘:) o " 0 - “ . w0 BruteForce:n = 10 from N = 22
-GKA A-Single Lo

RuSCDays - 2025 18

Conclusion

We address the problem of dependable resources co-allocation for parallel jobs in distributed
computing with group dependencies over the resources

We compared several algorithms and approaches, including brute force, classical knapsack,
branch-and-bounds, greedy approximation and a novel dynamic programming procedure

Proposed solution allows to generate accurate solution for problems with thousands of nodes,
(at least 10x times larger compared to branch-and-bounds approach)

In our further work, we will research possible hybrid approximation schemes and
metaheuristics applicable for even larger problems of resources allocation with group
dependencies

This work was supported by the Russian Science Foundation project No. 22-21-00372,
https://rscf.ru/en/project/22-21-00372/

RuSCDays — 2025 19

https://rscf.ru/en/project/22-21-00372/

Thank You!

Russian Supercomputing Days
2025

20

