
Efficient Allocation of Resources under Group
Dependencies and Availability Uncertainties

Victor Toporkov
Dmitry Yemelyanov
and Artem Bulkhak

National Research University “Moscow Power Engineering Institute”

RuSCDays - 2025

HPCS Scheduling Problem

3

Job
1 . . .Job

2
Job
3

Job
N-1

Job
NNodes

Reserved

Reserved

Local task

Reserved Reserved

1

2

3

4

5 Time

• HPCS and Virtual Organizations should implement efficient procedures for job-flow scheduling,
execution and the resources allocation

RuSCDays - 2023

Job Resource Request and Parallelization

4

The resource requirements for a single parallel job execution are
arranged into a resource request:

• n - number of simultaneously requested computational nodes

• p - minimal performance requirement for each computational
node

• V - average computational volume for a single node process
• C - maximum total job execution cost (budget)

Allocate n simultaneously available resources for a time interval
T with a total cost constraint C

1

2

n

.

.

T = V/pmin

RuSCDays - 2025

Availability-based Scheduling

� Traditional models consider job-flow scheduling problem in a deterministic way
� About 20% of Grid computational nodes exhibit truly random availability intervals

� In this work the uncertainties are modeled as resources availability events and
probabilities: a natural way of machine learning and statistical predictions
representation

� Resources availability predictions may originate from:
� Historical data
� Linear regression models
� Expert and machine learning systems
� Expert and user estimations

5RuSCDays - 2025

Job Scheduling Under Uncertainties

6

• Each single node is characterized with a set of availability events
• Availability event can be described with a random variable distribution

• The node availability probability 𝑃! during the whole interval 𝑙 depends on the occupation events

• In order to execute a parallel job a set of nodes (a window) should be allocated simultaneously
• We want to maximize a total window availability probability

RuSCDays - 2025

Window Availability Calculation

The total window availability probability may be calculated as follows:

𝑃!" =#
#

$

𝑃!
%! → max,

Allocate a set of 𝑛 nodes with a total cost constraint:

∑#&'$ 𝑐# ≤ 𝐶

Dynamic Programming solution (0-1 multiplicative knapsack):

𝑓(𝑐, 𝑣 = max{𝑓()'(𝑐, 𝑣), 𝑓()'(𝑐 − 𝑐(, 𝑣 − 1) ∗ 𝑃(}

𝑗 = 1, . . , 𝑚, 𝑐 = 1, . . , 𝐶, 𝑣 = 1, . . , 𝑛,

7RuSCDays - 2025

Group Dependencies between the Resources

8

In general, the resources and their
utilization events are not independent

Groups 𝐺# ∈ 𝐺 represent subsets of
resources sharing common properties

Group examples:

� Resources of a parallel job share common
utilization events

� Discount provided for resources selected from
the same vendor

� Performance benefits for matching resources

� Geographical location and connectivity-based
groups

RuSCDays - 2023

Group Dependencies Formalization

9

• 𝑃!
*" is a common availability probability for group 𝐺# (during interval 𝑙)

• If at least one resource from group 𝐺# is selected for window W, then the
common probability 𝑃!

*" is included into total availability 𝑃!":

𝑃$% =#
#

&∗

𝑃$
'"

where 𝑛∗ is a number of diverse groups used for the window𝑊

� Total cost constraint:∑#)*& 𝑐# ≤ 𝐶

RuSCDays - 2025

Branch and Bounds Algorithm to Address Group
Dependencies

10

• We implement branch-and-bounds approach to consider resources groupings for
the resources’ selection

• Max-Heap data structure is maintained for the

solution tree

• For each solution node we maintain:

• 𝐺! set of groups to be included in the solution

• 𝐺" set of groups to be excluded from the solution

• Other groups

• (Upper estimate) criterion value 𝑃!"

RuSCDays - 2025

Group Knapsack Algorithm (GKA)

11RuSCDays - 2025

• GKA considers groups of resources 𝐺# as enumeration items instead of individual VMs

• Instead of a single pair of characteristics 𝑝# and 𝑐#, each group item 𝐺# provides a list of
𝑁𝑉# possible resource allocation variants 𝑉𝑎𝑟$ = (𝑛$, 𝑢$, 𝑐$)

• GKA iterates over groups 𝐺# ∈ 𝐺 and their variants {𝑉𝑎𝑟$} to calculate the following
recurrent scheme:

𝑓# 𝑐, 𝑛 = max{𝑓#%&(𝑐, 𝑛), 𝑓'%&(𝑐 − 𝑐$, 𝑛 − n() + 𝑢$},
𝑖 = 1, . . , 𝐺 , 𝑗 = 1, . . , 𝑁𝑉#, 𝑐 = 1, . . , 𝐶)*+, 𝑛 = 1, . . , 𝑛)*+

• 𝑓# 𝑐, 𝑛 then maintains the maximum possible aggregate utility 𝑈 achievable for a
subset of 𝑛 VMs combined from different variants from groups {𝐺&, . . , 𝐺#} for a budget
𝑐

• Estimated computational complexity is bounded by 𝑂(𝑁 ∗ n)*+ ∗ 𝐶)*+)

Group Knapsack Algorithm (GKA)

12
RuSCDays - 2025

Res 1

Res 2

Res N1

…

(1, 𝑝!! , 𝑐")

(2, 𝑝!! , 𝑐" + 𝑐#)

(𝑛$" , 𝑝!! , ∑𝑐%)
…

Res 1

Res 2

Res N2

…

Res 1

Res 2

Res Ng

…

Group 𝐺- Group 𝐺. Group 𝐺/
𝑛$"

(1, 𝑝!" , 𝑐")

(2, 𝑝!" , 𝑐" + 𝑐#)

(𝑛$# , 𝑝!" , ∑𝑐%)
…

𝑛$#
(1, 𝑝!# , 𝑐")

(2, 𝑝!# , 𝑐" + 𝑐#)

(𝑛$& , 𝑝!# , ∑𝑐%)
…

𝑛$&

Algorithms for Analysis and Comparison

13

� Brute Force provides exact solution but usually not feasible for 𝑁 > 35 resources

� Knapsack Single implements resources allocation for 𝑃#$ = ∏%
& 𝑝% → max without any

knowledge of the resources’ groupings (multiplicative knapsack)

� Exact Branch and Bounds (Tree) implements the presented branch-and-bounds approach
with Knapsack Single for intermediate calculations, thus providing exact solution in
integers

� Greedy Branch and Bounds (Tree Greedy) implements the same branch-and-bounds
approach but uses more performance-efficient greedy approximation for the intermediate
calculations

� Group Knapsack (GKA) implements group 0-1 knapsack with account for group
dependencies

RuSCDays - 2025

Execution Time
selecting 𝑛 ∈ [1; 22] from 𝑁 = 22 resources

14RuSCDays - 2025

Brute Force, GKA and Branch-n-Bounds
generate exact solution

Brute Force execution time shows its
combinatorial nature

Brute Force took 10,000 times longer to
execute compared to the branch-and-
bounds and GKA in a simplified
environment with 𝑁 = 22 resources

Availability Probability
selecting 𝑛 ∈ [1; 30] from 𝑁 = 200 resources

15RuSCDays - 2025

GKA and Branch-n-Bounds
generate exact solution

Other algorithms provide 5-18%
lower values

Execution Time
selecting 𝑛 ∈ [1; 30] from 𝑁 = 200 resources

16RuSCDays - 2025

Branch-n-Bounds execution time
demonstrates dramatic growth of the
decision tree

GKA is at least 100 times faster to solve
the same problem

Availability Probability
selecting 𝑛 ∈ [1; 80] from 𝑁 = 1000 resources

17RuSCDays - 2025

GKA generates exact solution
increasingly better compared to
Knapsack

Execution Time
selecting 𝑛 ∈ [1; 80] from 𝑁 = 1000 resources

18RuSCDays - 2025

GKA and Knapsack execution times and
complexity are comparable

Algorithms exceed 1 second execution
time for the following problem sizes:

Knapsack: 𝑛 = 80 from 𝑁 = 1000

GKA: 𝑛 = 65 from 𝑁 = 1000

BB: 𝑛 = 30 from 𝑁 = 200

BruteForce: 𝑛 = 10 from 𝑁 = 22

Conclusion

19RuSCDays – 2025

� We address the problem of dependable resources co-allocation for parallel jobs in distributed
computing with group dependencies over the resources

� We compared several algorithms and approaches, including brute force, classical knapsack,
branch-and-bounds, greedy approximation and a novel dynamic programming procedure

� Proposed solution allows to generate accurate solution for problems with thousands of nodes ,
(at least 10x times larger compared to branch-and-bounds approach)

� In our further work, we will research possible hybrid approximation schemes and
metaheuristics applicable for even larger problems of resources allocation with group
dependencies

� This work was supported by the Russian Science Foundation project No. 22-21-00372,
https://rscf.ru/en/project/22-21-00372/

https://rscf.ru/en/project/22-21-00372/

Thank You!

20RuSCDays - 2025

