

Efficient Allocation of Resources under Group Dependencies and Availability Uncertainties

Victor Toporkov

Dmitry Yemelyanov

and Artem Bulkhak

National Research University "Moscow Power Engineering Institute"

HPCS Scheduling Problem

 HPCS and Virtual Organizations should implement efficient procedures for job-flow scheduling, execution and the resources allocation

Job Resource Request and Parallelization

The resource requirements for a single parallel job execution are arranged into a resource request:

- *n* number of simultaneously requested computational nodes
- p minimal performance requirement for each computational node
- *V* average computational volume for a single node process
- C maximum total job execution cost (budget)

Allocate *n* simultaneously *available* resources for a time interval *T* with a total cost constraint *C*

Availability-based Scheduling

- Traditional models consider job-flow scheduling problem in a deterministic way
 - About 20% of Grid computational nodes exhibit truly random availability intervals
- In this work the uncertainties are modeled as resources availability events and probabilities: a natural way of machine learning and statistical predictions representation
- Resources availability predictions may originate from:
 - Historical data
 - Linear regression models
 - Expert and machine learning systems
 - Expert and user estimations

Job Scheduling Under Uncertainties

- Each single node is characterized with a set of availability events
 - Availability event can be described with a random variable distribution
- The node availability probability P_a during the whole interval l depends on the occupation events
- In order to execute a parallel job a set of nodes (a window) should be allocated simultaneously
- We want to maximize a total window availability probability

Window Availability Calculation

The total window availability probability may be calculated as follows:

$$P_a^w = \prod_{i}^n P_a^{r_i} \to \max,$$

Allocate a set of n nodes with a total cost constraint:

$$\sum_{i=1}^{n} c_i \le C$$

Dynamic Programming solution (0-1 multiplicative knapsack):

$$f_j(c,v) = \max\{f_{j-1}(c,v), f_{j-1}(c-c_j,v-1) * P_j\}$$
$$j = 1,...,m, c = 1,...,C, v = 1,...,n,$$

Group Dependencies between the Resources

In general, the resources and their utilization events are not independent Groups $G_i \in G$ represent subsets of resources sharing common properties Group examples:

Resources of a parallel job share common utilization events

- Discount provided for resources selected from the same vendor
- Performance benefits for matching resources
- Geographical location and connectivity-based groups

RuSCDays - 2023

Group Dependencies Formalization

- $P_a^{G_i}$ is a common availability probability for group G_i (during interval l)
- If at least one resource from group G_i is selected for window W, then the common probability $P_a^{G_i}$ is included into total availability P_a^w :

$$P_a^w = \prod_i^{n^*} P_a^{G_i}$$

where n^* is a number of diverse groups used for the window W

• Total cost constraint: $\sum_{i=1}^{n} c_i \leq C$

Branch and Bounds Algorithm to Address Group Dependencies

- We implement branch-and-bounds approach to consider resources groupings for the resources' selection
- Max-Heap data structure is maintained for the solution tree
- For each solution node we maintain:
 - G^+ set of groups to be included in the solution
 - G^- set of groups to be excluded from the solution
 - Other groups
 - (Upper estimate) criterion value P_a^w

Group Knapsack Algorithm (GKA)

- GKA considers groups of resources G_i as enumeration items instead of individual VMs
- Instead of a single pair of characteristics p_i and c_i , each group item G_i provides a list of NV_i possible resource allocation variants $Var_j = (n_j, u_j, c_j)$
- GKA iterates over groups $G_i \in G$ and their variants $\{Var_j\}$ to calculate the following recurrent scheme:

$$f_i(c,n) = \max\{f_{i-1}(c,n), f_{i-1}(c-c_j, n-n_j) + u_j\},\$$

 $i = 1,..., |G|, j = 1,..., NV_i, c = 1,..., C_{\max}, n = 1,..., n_{\max}$

- $f_i(c,n)$ then maintains the maximum possible aggregate utility U achievable for a subset of n VMs combined from different variants from groups $\{G_1,\ldots,G_i\}$ for a budget c
- Estimated computational complexity is bounded by $O(N * n_{max} * C_{max})$

Group Knapsack Algorithm (GKA)

Algorithms for Analysis and Comparison

- Brute Force provides exact solution but usually not feasible for N > 35 resources
- Knapsack Single implements resources allocation for $P_a^w = \prod_i^n p_i \to \max$ without any knowledge of the resources' groupings (multiplicative knapsack)
- Exact Branch and Bounds (Tree) implements the presented branch-and-bounds approach with *Knapsack Single* for intermediate calculations, thus providing exact solution in integers
- Greedy Branch and Bounds (Tree Greedy) implements the same branch-and-bounds approach but uses more performance-efficient greedy approximation for the intermediate calculations
- Group Knapsack (GKA) implements group 0-1 knapsack with account for group dependencies

Execution Time selecting $n \in [1; 22]$ from N = 22 resources

Brute Force, GKA and Branch-n-Bounds generate exact solution

Brute Force execution time shows its combinatorial nature

Brute Force took 10,000 times longer to execute compared to the branch-and-bounds and GKA in a simplified environment with N=22 resources

Availability Probability selecting $n \in [1; 30]$ from N = 200 resources

GKA and Branch-n-Bounds generate exact solution

Other algorithms provide 5-18% lower values

Execution Time selecting $n \in [1; 30]$ from N = 200 resources

Branch-n-Bounds execution time demonstrates dramatic growth of the decision tree

GKA is at least 100 times faster to solve the same problem

Availability Probability selecting $n \in [1; 80]$ from N = 1000 resources

GKA generates exact solution increasingly better compared to Knapsack

Execution Time selecting $n \in [1; 80]$ from N = 1000 resources

GKA and Knapsack execution times and complexity are *comparable*

Algorithms exceed 1 second execution time for the following problem sizes:

Knapsack: n = 80 from N = 1000

GKA: n = 65 from N = 1000

BB: n = 30 from N = 200

BruteForce: n = 10 from N = 22

Conclusion

- We address the problem of dependable resources co-allocation for parallel jobs in distributed computing with group dependencies over the resources
- We compared several algorithms and approaches, including brute force, classical knapsack, branch-and-bounds, greedy approximation and a novel dynamic programming procedure
- Proposed solution allows to generate accurate solution for problems with thousands of nodes, (at least 10x times larger compared to branch-and-bounds approach)
- In our further work, we will research possible hybrid approximation schemes and metaheuristics applicable for even larger problems of resources allocation with group dependencies
- This work was supported by the Russian Science Foundation project No. 22-21-00372, https://rscf.ru/en/project/22-21-00372/

Thank You!

