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Various Quantum Computing Platforms

In the creation of quantum computers, various physical platforms are used. In this
work, a platform based on superconductors is discussed. In Russia, in addition to
research in the field of superconductors, areas related to ion traps1 and photonic tech-
nologies2,3 are actively being developed.

1I. V. Zalivako, N. V. Semenin, N. O. Zhadnov, K. P. Galstyan, P. A. Kamenskikh,
V. N. Smirnov , A. E. Korolkov, P. L. Sidorov, A. S. Borisenko, Y. P. Anosov, I. A. Semerikov,
K. Y. Khabarova, N. N. Kolachevsky, ”Quantum computing with trapped ions: principles,
achievements, and prospects”, Phys. Usp. 68, 552–583 (2025).

2N. N. Skryabin, I. V. Kondratyev, I. V. Dyakonov, O. V. Borzenkova, S. P. Kulik,
S. S. Straupe, ”Two-qubit quantum photonic processor manufactured by femtosecond laser
writing”, Appl. Phys. Lett. 122, 121102 (2023).

3E. V. Moreva, G. A. Maslennikov, S. S. Straupe, S. P. Kulik, ”Realization of Four-Level Qudits
Using Biphotons”, Phys. Rev. Lett. 97, 023602 (2006).
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Quantum Control Problem

In quantum control of an 𝑁 -level closed quantum system, one considers Schrödinger
equation for a unitary evolution operator 𝑈𝑓

𝑡 of the system

𝑑𝑈𝑓
𝑡

𝑑𝑡
= −𝑖(𝐻0 + 𝑓(𝑡)𝐻𝐼)𝑈

𝑓
𝑡 , 𝑈𝑓

𝑡

⃒⃒⃒
𝑡=0

= I,

where 𝐻0 and 𝐻𝐼 are the free and interaction Hamiltonians and 𝑓(𝑡) is a control field.

A wide class of quantum control problems can be expressed as maximizing mean value
of some observable 𝑂 = 𝑂† of the system at some final time 𝑇 > 0 provided that
initially the system is in some state 𝜌0. In particular, such control problem describes
optimal state preparation, relative maximization or minimization of populations of
different states, energy optimization, and optimization of other characteristics of the
quantum system. Such control problem in general is formulated as maximization of
the objective functional

ℱ𝑂[𝑓 ] = ⟨𝑂⟩𝑇 = Tr
[︀
𝑂𝑈𝑓

𝑇 𝜌0𝑈
𝑓†
𝑇

]︀
→ max.

The landscape of the quantum control problem is the graph of the objective functional.
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Transmon System

The transmon circuit instead of an inductor has a Josephson junction. The parameters
of the Josephson junction are4 𝐼 = 𝐼𝐶 sin𝜑, 𝐼𝐶 = 𝜋∆/(2𝑒𝑅𝑛), and 𝑉 = ℏ/(2𝑒) · 𝑑𝜑/𝑑𝑡,
where 𝐼 is the current in the Josephson junction, 𝐼𝐶 is the critical current, 𝜑 is the phase
difference between the wave functions of superconductors, ∆ is the superconducting
gap, 𝑒 is the charge of the electron, 𝑅𝑛 is the normal barrier resistance, 𝑉 is the voltage
on junction, and ℏ is the reduced Plank constant.

  

Figure 1: Circuit with capacitive coupling of a microwave drive line.

4Josephson, B.: Possible new effects in superconductive tunnelling. Physics Letters 1, 251–253
(1962).
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Transmon System

The free Hamiltonian for the transmon circuit5,6

𝐻̂𝑡𝑟 = 4𝐸𝐶 𝑛̂
2 + 𝐸𝐽(1− cos𝜑),

where 𝑛̂ is a Cooper number operator, 𝜑 is a phase operator, 𝐸𝐶 = 𝑒2/(2𝐶𝑡𝑟) ̸= 0 is
the energy of total capacitance of the transmon 𝐶𝑡𝑟 = 𝐶𝑆+𝐶𝐽 , consisting of the shunt
capacitance 𝐶𝑆 and self-capacitance of the junction 𝐶𝐽 , 𝐸𝐽 = 𝐼𝐶ℏ/2𝑒 = 𝐼𝐶Φ0/2𝜋 is
Josephson energy and Φ0 is the magnetic flux quantum.

The operators 𝑛̂ и 𝜑 satisfy the canonical commutation relations [𝜑, 𝑛̂] = 𝑖I. In terms
of the creation and annihilation operators they are written as

𝑛̂ = 𝑖 · 𝑛zpf

(︁
𝑎̂† − 𝑎̂

)︁
, 𝜑 = 𝜑zpf

(︁
𝑎̂† + 𝑎̂

)︁
,

where 𝑛zpf = 4
√︀

𝐸𝐽/32𝐸𝐶 и 𝜑zpf = 4
√︀

2𝐸𝐶/𝐸𝐽 are the zero-point fluctuations of the
charge and phase variables.

5J. Koch et al., ”Charge-insensitive qubit design derived from the Cooper pair box”, Phys. Rev.
A 76, 042319 (2007).

6P. Krantz et al., ”A quantum engineer’s guide to superconducting qubits”, Appl. Phys. Rev. 6,
021318 (2019).
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Transmon System

The transmon system satisfies the condition 𝐸𝐽/𝐸𝐶 ≫ 1 (in practice 𝐸𝐽/𝐸𝐶 ≥ 20)7,
in which the zero-point fluctuation of the phase variable is very small. That allows to
obtain an approximate Hamiltonian of the transmon system

𝐻̂𝑡𝑟 = 4𝐸𝐶 𝑛̂
2 +

1

2
𝐸𝐽𝜑

2 − 1

24
𝐸𝐽𝜑

4.

Then the approximate Hamiltonian of the transmon can be written terms of the cre-
ation and annihilation operators

𝐻̂𝑡𝑟 = (ℏ𝜔𝑟 − 𝐸𝐶) 𝑎̂
†𝑎̂− 𝐸𝐶

2
𝑎̂†𝑎̂†𝑎̂𝑎̂,

where 𝜔𝑟 =
√
8𝐸𝐽𝐸𝐶/ℏ = 1/

√
𝐿𝐽𝐶𝑡𝑟 ̸= 0 is the resonant frequency. The spectrum of

this Hamiltonian is

𝐸𝑛 = (ℏ𝜔𝑟 − 𝐸𝐶)𝑛− 𝐸𝐶
𝑛2 − 𝑛

2
.

7J. Koch et al., ”Charge-insensitive qubit design derived from the Cooper pair box”, Phys. Rev.
A 76, 042319 (2007).
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Transmon System
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Figure 2: Energy spectrum of the transmon qubit. Due to the anharmonicity, the transition
energy ℏ𝜔01 between states |0⟩ and |1⟩ differs from the transition energy ℏ𝜔12 between states
|1⟩ and |2⟩. In general, the transition energy between adjacent levels decreases as levels
increase. This allows to limit the system to only some lowest energy levels.
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Transmon System with Control

The complete Hamiltonian for a transmon system with control

𝐻̂ = 𝐻̂𝑡𝑟 + 𝑓(𝑡)𝑉𝑡𝑟,

where 𝑓(𝑡) = 𝐶𝑑
𝐶Σ

𝑄zpf𝑉𝑑(𝑡) is the control, 𝑄zpf =
√︀

ℏ/(2𝐿𝜔𝑟), and 𝑉𝑡𝑟 = −𝑖
(︀
𝑎̂− 𝑎̂†)︀ is

the interaction Hamiltonian of the transmon with the control. The total capacitance
𝐶Σ for the transmon system has the form 𝐶Σ = 𝐶𝑡𝑟 + 𝐶𝑑.

Restriction of the initial full infinite-dimensional Hamiltonian to a subspace of dimen-
sion 𝑁 . Consider the first 𝑁 lowest energy states of the transmon system with the
free and control Hamiltonians

𝐻̂𝑡𝑟𝑁 =

𝑁−1∑︁
𝑛=0

(︁
(ℏ𝜔𝑟 − 𝐸𝐶)𝑛− 1

2
𝐸𝐶𝑛(𝑛− 1)

)︁
|𝑛⟩⟨𝑛|,

𝑉𝑡𝑟𝑁 = −𝑖

𝑁−2∑︁
𝑛=0

√
𝑛+ 1

(︁
|𝑛⟩⟨𝑛+ 1| − |𝑛+ 1⟩⟨𝑛|

)︁
.
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Strong Regularity for Transmon System

Anharmonicity is important for avoiding symmetries in the energy level structure. For
a quantum system anharmonicity follows from the condition of strong regularity.

Definition 1
A strongly regular quantum system is a quantum system with different energy levels
and different Bohr frequencies of the free Hamiltonian.

Let us assume that some Bohr frequencies coincide, 𝐸𝑘→𝑛 = 𝐸𝑙→𝑚 for 𝑛+ 𝑙 ̸= 𝑘+𝑚.
Expressing 𝐸𝑘→𝑛 and 𝐸𝑙→𝑚 using formula

𝐸𝑘→𝑛 = (ℏ𝜔𝑟 − 𝐸𝐶)(𝑛− 𝑘)− 1

2
𝐸𝐶(𝑛

2 − 𝑛− 𝑘2 + 𝑘),

we get
𝐸𝐽

𝐸𝐶
=

1

32

(︂
𝑛2 + 𝑙2 − 𝑘2 −𝑚2

𝑛+ 𝑙 − 𝑘 −𝑚
+ 1

)︂2

.
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Strong Regularity for Transmon System

Introduce the set 𝑃𝑁 := {(𝑘, 𝑙,𝑚, 𝑛) : 𝑘, 𝑙,𝑚, 𝑛 ∈ {0, . . . , 𝑁 − 1}, 𝑛+ 𝑙 ̸= 𝑘 +𝑚}. Let
𝐺[𝑁 ] = max

{︁
1
32
(𝑛

2+𝑙2−𝑘2−𝑚2

𝑛+𝑙−𝑘−𝑚
+ 1)2 : (𝑘, 𝑙,𝑚, 𝑛) ∈ 𝑃𝑁

}︁
.

Proposition 1
If 𝐸𝐽/𝐸𝐶 > 𝐺[𝑁 ], then 𝑁-level transmon system is strongly regular.

For a transmon system 𝐸𝐽/𝐸𝐶 ≫ 1, and in practice 𝐸𝐽/𝐸𝐶 ≥ 20. Therefore, the
three and four-level transmon systems are strongly regular by default.

Figure 3: Plot of the function 𝐺(𝑁) for 𝑁 = 3, . . . , 12. If 𝐸𝐽/𝐸𝐶 > 𝐺(𝑁), then the
transmon system is strongly regular.

Korolev I.M., Pechen A.N., Volkov B.O. Higher-Order Traps for Transmon September 30, 2025 11 / 19



Complete Controllability of the Transmon System

A closed quantum system (𝐻0, 𝐻𝐼), whose dynamics is described by the Schrödinger
equation, is called completely controllable8 if there exists a time 𝑇min such that for any
time 𝑇 > 𝑇min and for any 𝑈 ∈ U(N) there exists a control 𝑓 ∈ 𝐿2([0, 𝑇 ],R) such that
𝑈 = 𝑒𝑖𝛼𝑈𝑓

𝑇 , where 𝛼 ∈ [0, 2𝜋).

From the article9 we can conclude, that strongly regular system with the chained
Hamiltonian

𝑉 =

𝑁−2∑︁
𝑛=0

(︁
𝑣𝑛,𝑛+1|𝑛⟩⟨𝑛+ 1|+ 𝑣*𝑛,𝑛+1|𝑛+ 1⟩⟨𝑛|

)︁
,

where all 𝑣𝑛,𝑛+1 ̸= 0, is complete controllable. The transmon system (𝐻̂𝑡𝑟𝑁 , 𝑉𝑡𝑟𝑁 ) is a
special case of a strongly regular system with a chained interaction Hamiltonian, hence
is completely controllable. Note that a controllability of anharmonic quantum systems
with chained interaction Hamiltonians with real matrix coefficients was studied.10 The
complete controllability of the transmon system can also be verified with a slight
modification of the proofs in that article.

8P. De Fouquieres and S. G. Schirmer, ”A closer look at quantum control landscapes and their
implication for control optimization”, IDAQP 16, 1350021 (2013).

9C. Altafini, ”Controllability of quantum mechanical systems by root space decomposition of
su(n)”, J. Math. Phys. 57, 2051–2062 (2002).

10S. Schirmer, H. Fu, A. Solomon, ”Complete controllability of quantum systems” Phys. Rev. A.
63, 063410 (2001).
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Higher-Order Traps

Trap is a local but not global maximum (minimum) of the objective functional ℱ in
the problem of quantum system control.11 Traps of the 3-rd order were considered
for the Λ-atom.12 The 𝑛-th order trap is defined by decomposition of the objective
functional in a Taylor series up to the 𝑛-th order.13

A control 𝑓 ∈ H0 := 𝐿2([0, 𝑇 ],R) is a trap of 𝑛-th order of the objective functional ℱ𝑂,
if ℱ𝑂 does not reach its global maximum at the control 𝑓 and the Taylor expansion of
the objective functional at 𝑓 has the form14

ℱ𝑂(𝑓 + 𝛿𝑓) = ℱ𝑂(𝑓) +

𝑛∑︁
𝑗=2

1

𝑗!
ℱ (𝑗)

𝑂 (𝑓)(𝛿𝑓, . . . , 𝛿𝑓) + 𝑜(‖𝛿𝑓‖𝑛), ‖𝛿𝑓‖ → 0,

where the polynomial 𝑅(𝛿𝑓) =
𝑛∑︀

𝑗=2

1
𝑗!
ℱ (𝑗)

𝑂 (𝑓)(𝛿𝑓, . . . , 𝛿𝑓) satisfies the conditions:

1 there exists 𝛿𝑓 ∈ H0 such that 𝑅(𝛿𝑓) < 0;
2 for any 𝛿𝑓 ∈ H0 there exists 𝜖 > 0 such that 𝑅(𝑡𝛿𝑓) ≤ 0 for all 𝑡 ∈ (−𝜖, 𝜖).
11H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, ”Quantum optimally controlled transition

landscapes”, Science 303, 1998–2001 (2004).
12A. N. Pechen, D. J. Tannor, ”Are there Traps in Quantum Control Landscapes?”, Phys. Rev.

Lett. 106, 120402 (2011).
13A. Pechen, D. Tannor, ”Quantum control landscape for a Lambda-atom in the vicinity of

second-order traps”, Isr. J. Chem. 52, 467–472 (2012).
14B. O. Volkov, A. N. Pechen, ”Higher-order traps for some strongly degenerate quantum control

systems”, Russ. Math. Surv. 2, 390–392 (2023).
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Third- and Fifth-Order Traps

The three-level approximation of the transmon system has a forbidden transition be-
tween one pair of levels and thereby corresponds to the class of three-level Λ-type
quantum systems. Using the results of the article15 shows, that for a three-level trans-
mon system, the null control is a trap of the third order.

Proposition 2

For the three-level transmon system, the null control 𝑓0 ≡ 0 is a trap of the third
order for the objective functional ℱ𝑂 with any observable of the form
𝑂 = 𝜆0|0⟩⟨0|+ 𝜆1|1⟩⟨1|, where 𝜆0 > 0 and 𝜆1 < 0, for the initial state 𝜌0 = |2⟩⟨2|,
and for any 𝑇 ≥ 𝑇min.

Consider a completely controllable closed quantum system with the free Hamiltonian
𝐻0 =

∑︀𝑁−1
𝑘=0 ℎ𝑘|𝑘⟩⟨𝑘| and a chained interaction Hamiltonian 𝑉 .

Proposition 3

For a controllable four-level system (𝐻0, 𝑉 ) with a chained interaction Hamiltonian,
the null control 𝑓0 ≡ 0 is a trap of the fifth order for the objective functional ℱ𝑂 for
any 𝑂 =

∑︀2
𝑘=0 𝜆𝑘|𝑘⟩⟨𝑘|, where 0 < 𝜆0 and 𝜆𝑘 < 0 for 𝑘 ∈ {1, 2}, for the initial state

𝜌0 = |3⟩⟨3|, and for any 𝑇 ≥ 𝑇min.
15B. Volkov, A. Myachkova, A. Pechen, ”Phenomenon of a stronger trapping behavior in Λ-type

quantum systems with symmetry”, Phys. Rev. A 111, 022617 (2025).
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Landscape Exploration Method Using the GRAPE Algorithm

To study the landscape of quantum control with objective functional maximizing the
average value of the observable the method16 based on GRAPE algorithm17 is used.

In this approach, we consider piecewise-constant controls of the form

𝑓𝐶(𝑡) =

𝑀∑︁
𝑘=1

𝑐𝑘𝜒(𝑡𝑘,𝑡𝑘+1](𝑡),

where 𝐶 = (𝑐1, . . . , 𝑐𝑀 ) ∈ R𝑀 is a 𝑀 -dimensional control vector, 𝜒(𝑡𝑘,𝑡𝑘+1](𝑡) is the
characteristic function of the half-interval (𝑡𝑘, 𝑡𝑘+1], 𝑡𝑘 = ∆𝑡(𝑘 − 1), and ∆𝑡 = 𝑇/𝑀 .
The objective functional ℱ𝑂(𝑓) is replaced by the objective function 𝒥𝑂 : R𝑀 → R,
where

𝒥𝑂(𝐶) = ℱ𝑂(𝑓𝐶) = Tr[𝑈𝑓𝐶
𝑇 𝜌0(𝑈

𝑓𝐶
𝑇 )†𝑂].

16T. Schulte-Herbrüggen et al., ”Optimal control for generating quantum gates in open
dissipative systems”, J. Phys. B: At. Mol. Opt. Phys. 44, 154013 (2011).

17N. Khaneja et al., ”Optimal control of coupled spin dynamics: design of NMR pulse sequences
by gradient ascent algorithms”, J. Magn. Reson. 172, 296–305 (2005).
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Landscape Exploration Method Using the GRAPE Algorithm

Gradient of the objective function is determined by the partial derivatives, for which
we use the linear in ∆𝑡 approximation to define the linear in ∆𝑡 approximate expression
gradlin𝒥𝑂(𝐶) for the gradient

𝜕𝒥𝑂(𝐶)

𝜕𝑐𝑘
≈ 2∆𝑡× Im

[︁
Tr

(︁
𝑊 †

𝑘𝑉𝑊𝑘𝜌0𝑊
†
𝑀𝑂𝑊𝑀

)︁]︁
=: (gradlin𝒥𝑂(𝐶))𝑘,

where 𝑊𝑘 = 𝑈𝑘𝑈𝑘−1 . . . 𝑈2𝑈1 and 𝑈𝑘 = 𝑒−𝑖(𝐻0+𝑐𝑘𝑉 )Δ𝑡 for 𝑘 = 1, . . . ,𝑀 .

We randomly, with a uniform distribution, generate a sufficiently large number 𝐿
of initial control vectors in a hypercube [−𝑙, 𝑙]𝑀 . Then starting at each such initial
control, we apply GRAPE algorithm with the approximate gradient and a fixed step
size 𝜀, so that at 𝑖-th iteration the control is updated as

𝐶𝑖+1 = 𝐶𝑖 + 𝜀 · gradlin𝒥𝑂(𝐶𝑖).

The algorithm stops either if the objective value 𝐽max = 1− 𝐼err for sufficiently small
𝐼err is obtained, or if a maximal number of iterations 𝐾stop is reached. If the algorithm
stops due to the second criterion (maximal number of iterations 𝐾stop is reached), and
the objective value 𝐽max is not obtained, we call this run as failed run. Otherwise we
call the run as successful.
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Numerical Analysis of the Control Landscape in a Vicinity of the Null
Control Five-Order Trap

For the problem of maximizing the average of the quantum observable, numerical
simulation is performed in the vicinity of the null control for four-level transmon system
with parameters 𝐸𝐽/ℎ = 28.6 GHz and 𝐸𝐶/ℎ = 0.292 GHz.18 The corresponding four-
level approximating Hamiltonians approximately are

𝐻̂𝑡𝑟4 =

⎛⎜⎜⎝
0 0 0 0
0 7.88 0 0
0 0 15.47 0
0 0 0 22.77

⎞⎟⎟⎠ , 𝑉𝑡𝑟4 = 𝑖

⎛⎜⎜⎝
0 −1 0 0

1 0 −
√
2 0

0
√
2 0 −

√
3

0 0
√
3 0

⎞⎟⎟⎠ .

For simulations we use 𝑂 = diag(1,−5,−5, 0), 𝑇 = 20, 𝑀 = 100, 𝜀 = 0.02, 𝐼err = 10−3,
𝐾stop = 2000, and 𝐿 = 1000.

18H. Paik et al., ”Observation of high coherence in Josephson junction qubits measured in a
three-dimensional circuit QED architecture”, Phys. Rev. Lett. 107, 240501 (2011).
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Numerical Analysis of the Control Landscape in a Vicinity of the Null
Control Five-Order Trap

Figure 4: (a) Fraction of failed runs (left vertical scale) and mean number of GRAPE
iteration steps (right vertical scale) vs 𝑙 = 0.1, 0.2, . . . , 2 for the transmon system. For each
value of 𝑙, 𝐿 = 1000 runs are performed. (b) An example behaviour of the objective value
𝒥𝑂(𝐶𝑖) and of the norm of the approximate gradient ‖gradlin(𝐶𝑖)‖ vs iteration number 𝑖
(416 iterations were performed) for 𝑙 = 2, when almost all 𝐿 = 1000 runs were successful.
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Conclusions

The strong regularity and complete controllability of the transmon system was
studied.
The quantum control landscape for maximizing the mean value of a quantum
observable for three- and four-level approximations of a transmon
superconducting system has been studied.
It was found that the null control is a trap of the third order for the three-level
transmon approximation and a trap of the fifth order for the four-level
approximation.
Numerical simulations using GRAPE algorithm show that in a close vicinity of
the null control (higher-order trap) optimization is inefficient, whereas with the
increase of the average distance between the initial control and the null control
optimization becomes more and more efficient.
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