





# GEMM ALGORITHM FOR MULTI-GPU PLATFORMS WITH REGULAR UNEVEN DATA TRANSFER LINKS

Choi Yea Rem, Malkovsky S., Stegailov V.

Moscow, 2025

#### MULTI-GPU GEMM ALGORITHM

#### Testing platforms



The topology of a node with 4 Nvidia V100 GPUs in the «cHARISMa» supercomputer

The topology of a node with 8 Nvidia A100 GPUs in the «cHARISMa» supercomputer

#### Testing platforms

X-Bus **IBM POWER 9 IBM POWER 9** 2 V100 GPUs and one IBM POWER 9 CPU are connected by high-performable links (NVLink) Tesla V100 Tesla V100 Nvlink 2.0 32GB SXM2 32GB SXM2 Tesla V100 Tesla V100 32GB SXM2 32GB SXM2 The topology of IBM Power System

AC922 8335-GTH with 4 V100 GPU

### Strategy of the developed GEMM algorithm

To reduce the amount and frequency of data transfer in the computing process bands of matrix C is combined by tiles on worker GPH with repeated usage of band A data before send result to the memory of GPU with (α, βatroonst)







Choi, Y.R., Nikolskiy, V., Stegailov, V.: Matrix-matrix multiplication using multiple GPUs connected by NVLink. In: 2020 Global Smart Industry Conference (GloSIC). pp. 354–361. IEEE (2020)

## Scheme of the developed GEMM algorithm on multiple GPUs



#### COMPUTING EXPERIMENTS: SETTINGS

#### Testing platform parameters

| Hardware Parameters              | IBM POWER | cHARISMa | cHARISMa |
|----------------------------------|-----------|----------|----------|
|                                  | 4 x V100  | 4 x V100 | 8 x A100 |
| Peak FP32 performance (TFLOPS)   | 14.899    | 14.899   | -        |
| Real FP32 performance (TFLOPS)   | 14.8      | 14.8     | -        |
| Peak TF32 performance (TFLOPS)   | -         | -        | 156      |
| Real TF32 performance (TFLOPS)   | -         | -        | 124      |
| Peak GPU memory bandwidth (GB/s) | 900       | 900      | 2039     |
| Peak GPU-GPU bandwidth (GB/s)    | 75        | 50       | 300      |
|                                  | 64        | 15.754   | 31.508   |
| Real GPU-GPU bandwidth (GB/s)    | 72.68     | 48.33    | 281      |
|                                  | 33.24     | 9.74     | 17.42    |

### Theoretical tile sizes for platforms with two different transfer bandwidths

$$\begin{cases} N_{i_s} > 2BW_{math}/BW_{transfer_s} \\ N_{i_f} > 2BW_{math}/BW_{transfer_f} \end{cases}$$

Expected in the idle condition if data transfer and computation overlapping is not affected by the tile sizes

Unequal tile sizes causes computing load difference within one kernel execution

$$\begin{cases} FLOPS_f = NN_{i_s}N_{i_f}, & BW_{transfer_f}/T_{math} = FLOPS/BW_{math}\\ FLOPS_s = NN_{i_s}^2, & T_{transfer} = 4N_iN/BW_{transfer} \end{cases}$$

$$\begin{cases} N_{i_s} > 2BW_{math}/BW_{transfer_s}, \\ N_{i_s} > 2BW_{math}/BW_{transfer_f}. \end{cases}$$

However, choosing sufficiently small  $N_{i_f}$  allows more stable asynchronous execution

Choi Y. R., Nikolskiy V., Stegailov V. Tuning of a Matrix-Matrix Multiplication Algorithm for Several GPUs Connected by Fast Communication Links, in: *Parallel Computational Technologies: 16th International Conference, PCT 2022, Dubna, Russia, March 29–31, 2022, Revised Selected Papers.* Springer, 2022. Ch. 12. P. 158-171.

#### Theoretical tile sizes for IBM Power System

#### The idle case

$$N_{i_s} > 2BW_{math}/BW_{transfer_s}$$
  
 $N_{i_f} > 2BW_{math}/BW_{transfer_f}$ 

$$N_{i_s} > 891$$
 $N_{i_f} > 446$ 

For the algorithm with one tile size

$$N_i > 2BW_{math} \left( \frac{NumGPUs_1}{BW_{transfer_1}} + \frac{NumGPUs_2}{BW_{transfer_2}} \right)$$
  $N_i > 2189$ 

$$N_i > 2189$$

## COMPUTING EXPERIMENTS: RESULTS

## Theoretical tile sizes and performance of the algorithm on testing platforms

| Testing Platforms     | IBM POWER       | cHARISMa        | cHARISMa        |
|-----------------------|-----------------|-----------------|-----------------|
|                       | $4 \times V100$ | $4 \times V100$ | $8 \times A100$ |
| Tile sizes, idle case | 512             | 1024            | 1024            |
|                       | 1024            | 4096            | 8192            |
| Performance (TFLOPS)  | 16.97           | 9.97            | 15.56           |
| (% from peak)         | 28.48           | 16.76           | 1.57            |
| Tile size, predicted  | 4096            | 8192            | 86301 (4096)    |
| Performance (TFLOPS)  | 38.39           | 32.76           | - (53.97)       |
| (% from peak)         | 64.42           | 54.97           | -(5.44)         |

## Best empirical tile sizes and performance of the algorithm on testing platforms

#### IBM POWER 4 x V100

cHARISMa 4 x V100

#### cHARISMa 8 x A100

$$N = 32768$$
 $N_{i_s} = 4096$ 
 $N_{i_f} = 2048$ 
TFLOPS = 45.48
 $\% = 76.82$ 

$$N = 32768$$
 $N_{i_s} = 8192$ 
 $N_{i_f} = 8192$ 
TFLOPS = 32.76
 $\% = 54.97$ 

Performance remains suboptimal compared to single A100 execution despite tile size optimization attempts

It can show over 450 TFLOPS on 8 x A100 with all-to-all NVLink topology

Choi Y. R., Stegailov V. Multi-GPU GEMM Algorithm Performance Analysis for Nvidia and AMD GPUs Connected by NVLink and PCIe. In: 22nd International Conference, MMST 2022, Nizhny Novgorod, Russia, November 14–17, 2022, Revised Selected Papers. Springer, 2022. Ch. 23. P. 281-292.

## On cHARISMa supercomputer with 4xV100 profiling with Nsight Systems



The profile of the Multi-GPU SGEMM operation on 4 V100 GPUs. Number of elements (N = 65536) in a row (column) of matrices and tile size (Ni = 1024 and 4096). Matrices A, B, and C are stored in devices 1, 2, and 0, respectively.

## On cHARISMa supercomputer with 4xV100 profiling with Nsight Systems

#### Synchronous data transfer operations via PCIe



The profile of the Multi-GPU SGEMM operation on 4 V100 GPUs. Number of elements (N = 32768) in a row (column) of matrices and tile size ( $N_i = 8192$ ). Matrices A, B, and C are stored in devices 1, 2, and 0, respectively.

## On cHARISMa supercomputer with 8xA100 profiling with Nsight Systems



The profile of the Multi-GPU SGEMM operation on 8 A100 GPUs. Number of elements (N = 65536) in a row (column) of matrices and tile size ( $N_i = 1024$  and 8192) and ( $N_i = 4096$ ). Matrices A, B, and C are stored in devices 1, 2, and 0, respectively.

### On IBM Power Systems profiling with Visual Profiler



The profile of the Multi-GPU SGEMM operation on IBM POWER 9 server.

Number of elements (N = 32768) in a row (column) of matrices, and tile sizes (N<sub>i</sub> = 512 and 1024). Matrices A, B, and C are stored in devices 1, 2, and 0, respectively.

### On IBM Power Systems profiling with Visual Profiler



The profile of the Multi-GPU SGEMM operation on IBM POWER 9 server. Number of elements (N = 32768) in a row (column) of matrices, and tile sizes ( $N_i = 4096$ ). Matrices A, B, and C are stored in devices 1, 2, and 0, respectively.

### On IBM Power Systems profiling with Visual Profiler



The profile of the Multi-GPU SGEMM operation on IBM POWER 9 server. Number of elements (N = 32768) in a row (column) of matrices, and tile sizes (N<sub>i</sub> = 2048 and 4096). Matrices A, B, and C are stored in devices 1, 2, and 0, respectively.

#### Summary

- Performance peaks: Multi-GPU algorithms on heterogeneous servers can reach up to 76% efficiency, but actual results strongly depend on inter-GPU communication speed.
- ➤ Efficiency drops: On cHARISMa's V100 nodes, indirect P2P paths limit performance to about 55% of peak. With 8 A100 GPUs, restrictive tile sizes (due to memory limits) prevent optimal configuration, resulting in substantially degraded performance.
- ➤ Key bottlenecks: CPU involvement in D2H/H2D transfers and shared, unidirectional GPU links force synchronous processing, further reducing throughput.
- Additional considerations: For complex workloads, memory bandwidth and the number of asynchronous engines available critically affect sustained performance.