

FEP-based large-scale virtual screening for effective drug discovey against COVID-19 and clinical trials

Chengkun Wu, and colleagues

Our multidisciplinary team

FEP method development

Runduo Liu

Chang-Guo Zhan

HPC implementation

Chengkun Wu

Yishui Li

Meng-Xia Mo

Experimental validation

Xin Wang

Clinical studies

Hai-Bin Luo

Fuling Zhou

HPC support

Kai Lu

Ruibo Wang

Jie Liu

Chunye Gong

Canqun Yang

Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential – Computational challenges

- Virtual screening of drugs *via* Free Energy Perturbation (FEP) based absolute binding free energy (ABFE) calculations
- III Large-scale virtual screening on Tianhe supercomputer
- IV Experimental results from in vitro and in vivo validations
- V Clinical outcomes
- VI Concluding remarks Innovation and outlook

Emerging and re-emerging infectious diseases are changing our world

- Lee et al, Estimating the global economic costs of SARS, 2004;
- UNDP report,2017;
- Joo et al, Health Security, 2019;
- World Bank Report "Global Economic Effects of COVID-19",2020.

Virus SARS-CoV-2 has generated hundreds of variants within 0.5 year

Siobain Duffy, PLoS Biology, 2018. with modifications

25020 03/2020

Within 0.5 year hundreds of variants

https://covid.cdc.gov/covid-data-tracker

High Mutation Rate of Viruses

Emerging New Variants/Viruses

Drug discovery: Not fast enough against viruses with a high mutation rate

https://clinicaltrials.gov/

CADD: Predicting binding affinity of each potential drug candidate with a given target

Key point in CADD:

To reliably predict binding free energy of each potential drug candidate with a given drug target

Limitation of traditional computational methods for binding free energy prediction

Scoring function (Molecular docking)

- Fast (billions of compounds)
- Inaccurate, low hit rate (~2%)^a

End point methods (MM-PBSA)

- Moderate speed
- Moderate, hit rate (<10%)b

Statistical mechanical methods (FEP – Free Energy Perturbation)

- Theoretically rigorous for relative binding free energy calculation
- Not designed for virtual screening
- Time consuming

Unmet need: A truly accurate and efficient computational approach to absolute binding free energy calculations suitable for virtual screening

- Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential Computational challenges
- Virtual screening of drugs *via* Free Energy Perturbation (FEP) based absolute binding free energy (ABFE) calculations
- III Large-scale virtual screening on Tianhe supercomputer
- IV Experimental results from in vitro and in vivo validations
- V Clinical outcomes
- VI Concluding remarks Innovation and outlook

Why was FEP difficult for absolute binding free energy (ABFE) calculation?

FEP was designed to simulate a "perturbation" – a minor change of molecular structure; Computational simulation of the *perturbation* is reliable only for a truly *minor* structural change.

Current FEP: simulate a minor structural change

Relative binding free energy

Changing < 10 atomsEasy to calculate

Phase space

Needed FEP: simulate disappearance of an entire molecule

Absolute binding free energy

Changing 50 ~ 100 atoms
 Difficult to calculate

Major problems preventing FEP-ABFE calculations-based virtual screening

- ➤ To deal with the large change, one must add many intermediate states, which means that one has to perform many FEP simulations for each FEP ABFE prediction
 - -- Computationally time-consuming

- ➤ Technically, to reliably evaluate conformational entropy contribution to ABFE, certain restraints are required. The choice of restraints required is case by case
 - -- Difficult for automated virtual screening

Our solutions:

- ➤ A restraint energy distribution (RED) function derived and used to minimize the # of intermediate states required for a converged ABFE calculation.
- > A unique algorithm enabling to automatically identify restraints (with three ligand atoms and three target atoms, restrained to their equilibrium).

Performance of our novel approach to the conformational entropy estimation

Physical model derivation

$$U_{ini} = k_{ini} (r - r_0)^2$$
 (S1)

$$\Delta U_{i+1,i} = \Delta \lambda_{i+1,i} k_{res} (r - r_0)^2$$
 (S2)

$$P(U_i) = \frac{ex \, p(-\beta U_i) \Omega(U_i)}{Z} \tag{S3}$$

$$P(U_i) = \frac{exp(-\beta(k_{ini} + \lambda_i k_{res})(r - r_0)^2)4\pi(r - r_0)^2}{Z}$$
(S6)

★ RED function:

$$P(\Delta U) = b^2 \cdot \exp(-b\Delta U) \cdot \Delta U$$

FEP-ABFE protocol used in this work

- 1. Pre-equilibrate MD
- 3. Turn off charges (5 λ)
- 2. Automatic restraint addition
- 4. Turn off vdW (15 λ)

42 MD simulations for each FEP-ABFE calculation

Acceleration of FEP-ABFE calculation using the new protocol on Tianhe HPC

A single 8-cores server Traditional protocol

60,000 times faster

Intel Xeon E5
~30 days/compound

Tianhe supercomputer New protocol

6 days / **12,000** compounds

(or **2,000** compounds per day)

Emergency drug discovery

Contents

- Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential Computational challenges
- Virtual screening of drugs *via* Free Energy Perturbation (FEP) based absolute binding free energy (ABFE) calculations
- Large-scale virtual screening on Tianhe supercomputer
 - IV Experimental results from in vitro and in vivo validations
 - V Clinical outcomes
 - VI Concluding remarks Innovation and outlook

Choose key targets for large-scale **FEP-ABFE** based virtual screening

Large-scale virtual screening on Tianhe supercomputer

Docking to TMPRSS2 and Mpro

Top 12,000 protein-ligand complexes

>500,000 MD 75,000 nodes, 1,200,000 cores

Fully automated FEP protocols

M^{pro}: 98 compounds TMPRSS2: 66 compounds

Bioassay

50 hits (Mpro) 16 hits (TMPRSS2)

1 clinical candidate

Total number of MD simulation jobs (4 ns / MD simulation)

Target	Ligand DB	Pre-Equilibrate	Ligand	Complex
	FDA	100	2000	2100
Mpro	Chemdiv	3143	62860	66003
	SPECS	3027	60540	63567
TMPRSS2	Chemdiv	3004	60060	63084
TIVIFICOSZ	SPECS	2825	56500	59325
To	tal	12099 241960 254079 508,138		254079
10				

Intelligent job management system (>500,000 MD simulation tasks)

Intelligent job management system (>500,000 MD simulation tasks)

Computational resource and time used for the large-scale virtual screening

Time for the virtual screening with single precision

TH F IN F	Job Type	System used	Time (including 10)
大 高 で With a manuscript and a communitary of the first and the firs	Pre-Equilibrate	12,000 nodes	27.4 h
A Parameter A Pa	Ligand	63,000 nodes	23.7 h
	Complex	75,000 nodes	114.5 h
	Total	1,200,000 CPU cores 75,000 nodes	141.9 h

Contents

- Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential Computational challenges
- Virtual screening of drugs *via* Free Energy Perturbation (FEP) based absolute binding free energy (ABFE) calculations
- III Large-scale virtual screening on Tianhe supercomputer
- Experimental results from in vitro and in vivo validations
 - V Clinical outcomes
 - VI Concluding remarks Innovation and outlook

Experimental validation of the computational predictions

Hits against M^{pro}

Database	Number of tested compounds	>50% Inhibition at 100 µM	>33% Inhibition at 100 µM
SPECS	38	18	24
ChemDiv	35	16	19
FDA	25	16	20
Total	98	50 (51%)	63 (64%)

Experimental validation of the computational predictions

Hits against TMPRSS2

Database	Number of tested compounds	>50% Inhibition at 100 µM	>33% Inhibition at 100 µM
SPECS	35	9	24
ChemDiv	31	7	20
Total	66	16 (24%)	44 (67%)

Superior performance of FEP-ABFE predictions compared with MM-PBSA

Representative Hits

Further consideration in repurposing a drug for treatment of COVID-19 patients: Known functions of the drug

1) Active Mpro inhibitors from known FDA-approved drugs

2) Active M^{pro} inhibitors from commercial compound libraries

Inspiration: Identify a drug with both anti-viral and anti-thrombosis activities

Clinical variables in 124 patients with COVID-19

Prof. Fuling Zhou

Head of hematology

Zhongnan Hospital of Wuhan University

Variable	Range for normal subjects	Range for COVID-19 patients (Total number = 124)
PLT (109/L)	125-350	191.7 80.0 (54-525)
Lymphocyte (109/L)	1.1-3.2	0.9 0.6 (0.1-5.0)
MPV (fL)	6-12	9.1 1.3 (6.6-12.3)
PT (S)	9.4-12.5	13.0 1.4 (8.6-17.8)
APTT (S)	25.1-36.5	30.3 3.2 (22.4-38.1)
FIB (mg/dL)	238-498	429.8 88.7 (203-750)
D-dimer (µg/L)	0-500	1168.6 3652.7 (35-26315)
	<u> </u>	Liu VV et al Acta Pharm Sin P 2020

Liu XY, et al, Acta Pharm. Sin. B. 2020.

Hypercoagulability was associated with COVID-19 disease severity.

Identified clinical candidate against COVID-19: Persantine (Dipyridamole)

A) Mpro inhibition

B) Anti-viral replication

C) Anti-pulmonary fibrosis

D) Anti-thrombosis

New discovery in this work

Known function

In vitro and in vivo validation: Emergency drug discovery

Liu XY, et al, Acta Pharm. Sin. B. 2020.

Contents

- Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential Computational challenges
- Virtual screening of drugs *via* Free Energy Perturbation (FEP) based absolute binding free energy (ABFE) calculations
- III Large-scale virtual screening on Tianhe supercomputer
- IV Experimental results from in vitro and in vivo validations

Clinical outcomes

VI Concluding remarks – Innovation and outlook

Dipyridamole adjunctive therapy improved the coagulation profiles and shortened the time for discharging the patients

Discharge time for the patients

Group	Patients	Median time from treatment to discharge (days)
Control	86	11
DIP	37	7

Feb.-Apr., 2020 Jiang M, et al, J. Cell. Mol. Med. 2021.

The mechanism of dipyridamole: Anti-viral and anti-thrombosis

Anti-thrombosis

Clinical Studies

Ongoing clinical trials of dipyridamole against COVID-19 (by other independent groups)

Trial and Title	NCT04424901: Open Label Dipyridamole- In Hospitalized Patients With COVID-19	NCT04410328: Aggrenox To Treat Acute COVID-19	NCT04391179: Dipyridamole to Prevent Coronavirus Exacerbation of Respiratory Status (DICER) in COVID-19
Trial Type	Randomized Phase II Open Label clinical trial	Randomized Phase III clinical trial	Randomized Phase II clinical trial
Status	Recruiting	Recruiting	Completed; results not yet disclosed
Conditions	COVID-19 PneumoniaVascular Complications	➤ COVID-19	 COVID Corona Virus Infection COVID-19 SARS-CoV-2 Infection
Interventions	 Drug: Dipyridamole (Standard Care vs Standard Care with Dipyridamole) 	 Drug: Dipyridamole ER 200mg/ Aspirin 25mg orally/enterally and Standard of care Other: Standard of care 	Drug: Dipyridamole 100 Milligram(mg)Drug: Placebo oral tablet
Locations	UConn Health, Farmington, Connecticut, United States	Rutgers New Jersey Medical School University Hospital, Newark, New Jersey, United States	University of Michigan, Ann Arbor, Michigan, United States

- Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential Computational challenges
- Virtual screening of drugs *via* Free Energy Perturbation (FEP) based absolute binding free energy (ABFE) calculations
- III Large-scale virtual screening on Tianhe supercomputer
- IV Experimental results from in vitro and in vivo validations
- V Clinical outcomes

Concluding remarks – Innovation and outlook

Summary of the major innovation and an unprecedentedly high hit rate

- A new RED function for accelerated ABFE prediction
- A novel algorithm allowing FEP-ABFE-based virtual screening
- Automatic

A large-scale virtual screening runtime management system

High hit-rate (51%)
Promising clinical outcomes

- Automated high-throughput FEP-ABFE calculation protocol
- Milestone: The first time FEP-ABFE was used in large-scale virtual screening
- Efficiency of FEP was greatly increased applied in emergency drug discovery

Outlook

A general approach for rapid drug discovery using a supercomputer like

Tianhe to make us ready against next breakout or other diseases

HPC on a larger scale

Accelerate

Acknowledgement

Hospital:

Zhongnan Hospital of Wuhan University

HPC support:

- National Supercomputing centers in Tianjing, Shenzhen, and Guangzhou;
- Tencent Cloud

Funding support:

- National Key R&D Program of China
- National Natural Science Foundation of China
- Fundamental Research Funds for Hainan University
- Science Foundation of Guangzhou City
- Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme
- The National Science Foundation
- The Taishan Scholars Program
- The Innovative Leader of Qingdao Program
- The special scientific research fund for COVID-19 from the Pilot National Laboratory for Marine Science and Technology
- Open fund from the State Key Laboratory of High Performance Computing

Thank you

Backup Slides

QA of supercomputing

- What system did you use?
 We used the new generation of Tianhe supercomputer.
- Where is the system located? In Tianjin.
- What is the scale of the new Tianhe system?
 We used a portion of the new Tianhe system. To be precise, we used over 75,000 nodes.
- What is the architecture of the system?
 We only used the proprietary CPU cores.
- How many cores in the CPU?
 We only used 16 cores per node.
- What is the peak performance of the new Tianhe system?

 Our team focused on finishing the large-scale virtual screening with the system within an acceptable amount of time rather than quantified performance in terms of FLOPS.
- Is there any heterogeneous accelerator in the system?
 We only used CPU cores.
- Why did not screen FDA database against TMPRSS2?
 It has already been done by others.

Backup Slides for page 2 To Dr. Zhan

- ➤ COVID 19, SARS, and MERS infection and death data from WHO.
- ➤ MERS: between 2012 to 2021.
- ➤ Zika: American only, 2015 to 2021, from PAOH.

Mutational frequency of SARS-CoV-2 genes

