
Optimization and Application of the Fast and
Efficient Approach to Electromagnetic Field

Computations with Limited Computer
Resources

Iurii B. Minin, Sergey A. Matveev

Fryazino branch of Kotelnikov IRE of RAS, Moscow State University

Agenda

• 1. Introduction & Motivation

• 2. Applications

• 3. Methods

• 4. Validation & Optimization

• 5. Numerical Experiments

• 6. Results

• 7. Conclusions

• 8. Appendix (Poster Summary)

Motivation & Problem Statement

• - Challenge: Solving Helmholtz equations in
heterogeneous media

• - Application: Photonic and micro/nano device
design

• - Limitation: High computational cost and memory
requirements

Key Challenges

• - Standard solvers (Jacobi, Gauss-Seidel)
converge too slowly

• - GMRES converges faster but consumes huge
memory (Krylov subspace)

• - Large grids → memory explosion

• - Need efficient method for speed + memory
balance

What’s New?

• - Combination: GMRES(k) + FFT + Toeplitz +
GPU

• - Achieved ~10× lower memory use with
restarts

• - Up to 2× larger task deployment without MPI
or new hardware

• - Validated with photonic device applications

Applications

• - TE/TM polarization splitter

• - Wavelength splitter

• - Bragg reflectors

• - Fiber Bragg gratings

• - General optimization of antennas and
photonic structures

Research Objective

• - Develop fast, resource-efficient algorithm for 2D
Helmholtz equation

• - Optimize trade-off: memory vs. computation speed

• - Handle large grids (up to 8192×8192)

Validation &
Optimization Approaches

• - Validation with Green’s Function Integral
Equation Method (GFIEM)

• - Bi-directional Evolutionary Structural
Optimization (BESO)

• - Python-based ESO results (demonstrated
effectiveness)

• - Enhances design domain optimization for
photonic devices

Methods (Part I)

• - Green’s Function Integral Equation Method
(GFIEM)

• - Toeplitz matrices for efficient matrix-vector
operations

• - FFT acceleration: O(n log n) vs O(n²)

GMRES(k) Advantage: Restarts limit Krylov subspace size, reducing
memory usage.

Methods (Part II) – GMRES

• - GMRES solver constructs a Krylov subspace

• - Memory consumption grows with Krylov
vectors

• - GMRES(k) with restarts limits subspace size

• - Restart strategy balances memory vs
iterations

• Enables very large grids without MPI or
cluster expansion

Numerical Experiments

• - Problem: Gustav Mie scattering on a cylinder

• - Grid sizes: 128×128 to 8192×8192

• - Accuracy target: residual ≤ 0.01

• - Platforms: CUDA GPU vs. CPU (MKL, Python)

Results (Part I) – Computation Time

• - GPU acceleration yields large speedup:

• • Up to ×114 vs MKL C++

• • Up to ×350 vs NumPy Python

• - Efficiency increases with grid size

• - Restarted GMRES reduces memory ~10×

• Toeplitz matrix instead of dense matrix

Results (Part II) – Iterations & Errors

• - For k ≥ 35, convergence without restarts (small grids)

• - Larger grids require restarts (memory overflow)

• - Relative error stabilizes after ~23 iterations

Results (Part III) – Memory Usage

• - Memory grows quadratically with grid size

• - GPU overflow at 8192×8192 without restarts

• - Restart strategy makes large grids feasible

Applications Spotlight

• - TE/TM polarization splitter

• - Wavelength splitters

• - Bragg reflectors

• - Fiber Bragg gratings

• - Photonic IC optimization

• Shows direct impact of efficient solver on
device design

Conclusions in brief

• - Fast: GPU acceleration + FFT + Toeplitz

• - Memory-Efficient: GMRES(k) with restarts

• - Scalable: handled grids up to 8192×8192

• - Practical: applied to photonic devices and IC
design

Conclusions

• - Efficient FFT-accelerated GMRES solver developed
• - Trade-off: memory savings more iterations
• - GPU parallelization crucial (best on NVIDIA V100)
• - Future: non-uniform grids (higher accuracy, but may break Toeplitz

optimization)
• - GMRES(k) restarts enabled larger problem sizes
• without expanding hardware or using MPI
• - Measurements showed up to ~2× task deployment increase
• - GMRES with restarts may diverge when using incremental Krylov

bases
• - Smaller surrogate matrices maintain computational accuracy
• - Non-uniform grids could enhance accuracy but complicate Toeplitz

system setup
GMRES(k) Advantage: Enabled ~2× larger problem sizes without

extra hardware or MPI.

Acknowledgments

• - Funded by Russian Science Foundation project 25-11-00392

• - Support from state task of Fryazino branch of Kotelnikov IRE of RAS

Executive Summary

• • Problem: Solving large-scale Helmholtz equations for EM fields is
computationally expensive

• • Approach: FFT-accelerated GMRES solver with Toeplitz matrices + GPU
parallelization

• • Challenge: Memory usage grows with Krylov subspace size

• • Solution: GMRES(k) restarts → ~10× lower memory, enabling larger grids

• • Results: Up to 114× faster (vs CPU), 350× faster (vs Python); feasible on
grids up to 8192×8192

• • Key Impact: ~2× larger task deployment without extra hardware or MPI

• • Applications: Design of photonic components, IC optimization

Methodology Flow Diagram

Problem:
Large Helmholtz
Equations

Method:
GMRES + FFT +
Toeplitz

Acceleration:
GPU Parallelization

Results:
Fast, Efficient,
Large-scale EM
Simulation

Summary

• - Developed an FFT-accelerated GMRES solver for 2D
Helmholtz problems

• - GMRES requires Krylov subspace; restarts (GMRES(k))
reduce memory ~10×

• - Restart strategy enabled grids up to 8192×8192 on GPUs
• - Trade-off: lower memory vs. more iterations
• - GPU acceleration (V100) provided up to 114× faster vs

CPU, 350× vs Python
• - Applications: TE/TM splitters, wavelength splitters, Bragg

reflectors, IC optimization
• - Future work: non-uniform grids (higher accuracy, but

Toeplitz limitations)

Fast & Efficient Electromagnetic Field Computations
with GMRES(k) and GPU Acceleration

Problem
• Large Helmholtz equations for EM fields
• High computational & memory costs

Method
• GMRES solver with Krylov
subspace
• GMRES(k) restarts to limit
memory
• FFT + Toeplitz matrices
• GPU parallelization

Results
• 10× lower memory with restarts
• Up to 114× faster (vs CPU)
• Up to 350× faster (vs Python)
• Grids up to 8192×8192 feasible

Impact
• ~2× larger task deployment
without MPI or new hardware
• Applications: Photonic design,
IC optimization

Speedup on Different Platforms Memory Usage vs Grid Size

Performance Comparison

• CPU (MKL C++): baseline

• GPU (CUDA V100): up to 114× faster

• Python (NumPy): 350× slower than GPU

• GMRES(k) with restarts: ~10× lower memory,
2× larger tasks

Future Work

• - Non-uniform grids may improve accuracy

• - But break Toeplitz structure (no FFT
acceleration)

• - Requires new approaches for efficiency

Results – Extended

Fig. 7 – Computation time vs grid size

Results – Extended

Fig. 6 – Iterations vs grid size Fig. 5 – Error behavior with iterations

Results – Extended

Fig. 8 – Memory usage vs grid size

Appendix – Additional Figures

Additional Figure: figure_3_0.jpeg Additional Figure: figure_5_1.png

Additional Figure: figure_6_1.png Additional Figure: figure_7_1.png

	Слайд 1, Optimization and Application of the Fast and Efficient Approach to Electromagnetic Field Computations with Limited Computer Resources
	Слайд 2, Agenda
	Слайд 3, Motivation & Problem Statement
	Слайд 4, Key Challenges
	Слайд 5, What’s New?
	Слайд 6, Applications
	Слайд 7, Research Objective
	Слайд 8, Validation & Optimization Approaches
	Слайд 9
	Слайд 10
	Слайд 11, Methods (Part I)
	Слайд 12, Methods (Part II) – GMRES
	Слайд 13, Numerical Experiments
	Слайд 14, Results (Part I) – Computation Time
	Слайд 15, Results (Part II) – Iterations & Errors
	Слайд 16, Results (Part III) – Memory Usage
	Слайд 17, Applications Spotlight
	Слайд 18, Conclusions in brief
	Слайд 19, Conclusions
	Слайд 20, Acknowledgments
	Слайд 21, Executive Summary
	Слайд 22
	Слайд 23, Summary
	Слайд 24
	Слайд 25, Performance Comparison
	Слайд 26, Future Work
	Слайд 27, Results – Extended
	Слайд 28, Results – Extended
	Слайд 29, Results – Extended
	Слайд 30, Appendix – Additional Figures

