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Motivation & Problem Statement

• - Challenge: Solving Helmholtz equations in 
heterogeneous media

• - Application: Photonic and micro/nano device 
design

• - Limitation: High computational cost and memory 
requirements



Key Challenges

• - Standard solvers (Jacobi, Gauss-Seidel) 
converge too slowly

• - GMRES converges faster but consumes huge 
memory (Krylov subspace)

• - Large grids → memory explosion

• - Need efficient method for speed + memory 
balance



What’s New?

• - Combination: GMRES(k) + FFT + Toeplitz + 
GPU

• - Achieved ~10× lower memory use with 
restarts

• - Up to 2× larger task deployment without MPI 
or new hardware

• - Validated with photonic device applications



Applications

• - TE/TM polarization splitter

• - Wavelength splitter

• - Bragg reflectors

• - Fiber Bragg gratings

• - General optimization of antennas and 
photonic structures



Research Objective

• - Develop fast, resource-efficient algorithm for 2D 
Helmholtz equation

• - Optimize trade-off: memory vs. computation speed

• - Handle large grids (up to 8192×8192)



Validation & 
Optimization Approaches

• - Validation with Green’s Function Integral 
Equation Method (GFIEM)

• - Bi-directional Evolutionary Structural 
Optimization (BESO)

• - Python-based ESO results (demonstrated 
effectiveness)

• - Enhances design domain optimization for 
photonic devices







Methods (Part I)

• - Green’s Function Integral Equation Method 
(GFIEM)

• - Toeplitz matrices for efficient matrix-vector 
operations

• - FFT acceleration: O(n log n) vs O(n²)

GMRES(k) Advantage: Restarts limit Krylov subspace size, reducing 
memory usage.



Methods (Part II) – GMRES

• - GMRES solver constructs a Krylov subspace

• - Memory consumption grows with Krylov 
vectors

• - GMRES(k) with restarts limits subspace size

• - Restart strategy balances memory vs 
iterations

• Enables very large grids without MPI or 
cluster expansion



Numerical Experiments

• - Problem: Gustav Mie scattering on a cylinder

• - Grid sizes: 128×128 to 8192×8192

• - Accuracy target: residual ≤ 0.01

• - Platforms: CUDA GPU vs. CPU (MKL, Python)



Results (Part I) – Computation Time

• - GPU acceleration yields large speedup:

• • Up to ×114 vs MKL C++

• • Up to ×350 vs NumPy Python

• - Efficiency increases with grid size

• - Restarted GMRES reduces memory ~10×

• Toeplitz matrix instead of dense matrix



Results (Part II) – Iterations & Errors

• - For k ≥ 35, convergence without restarts (small grids)

• - Larger grids require restarts (memory overflow)

• - Relative error stabilizes after ~23 iterations



Results (Part III) – Memory Usage

• - Memory grows quadratically with grid size

• - GPU overflow at 8192×8192 without restarts

• - Restart strategy makes large grids feasible



Applications Spotlight

• - TE/TM polarization splitter

• - Wavelength splitters

• - Bragg reflectors

• - Fiber Bragg gratings

• - Photonic IC optimization

• Shows direct impact of efficient solver on 
device design



Conclusions in brief

• - Fast: GPU acceleration + FFT + Toeplitz

• - Memory-Efficient: GMRES(k) with restarts

• - Scalable: handled grids up to 8192×8192

• - Practical: applied to photonic devices and IC 
design



Conclusions

• - Efficient FFT-accelerated GMRES solver developed
• - Trade-off: memory savings more iterations
• - GPU parallelization crucial (best on NVIDIA V100)
• - Future: non-uniform grids (higher accuracy, but may break Toeplitz 

optimization)
• - GMRES(k) restarts enabled larger problem sizes
• without expanding hardware or using MPI
• - Measurements showed up to ~2× task deployment increase
• - GMRES with restarts may diverge when using incremental Krylov 

bases
• - Smaller surrogate matrices maintain computational accuracy
• - Non-uniform grids could enhance accuracy but complicate Toeplitz 

system setup
GMRES(k) Advantage: Enabled ~2× larger problem sizes without 

extra hardware or MPI.
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Executive Summary

• • Problem: Solving large-scale Helmholtz equations for EM fields is 
computationally expensive

• • Approach: FFT-accelerated GMRES solver with Toeplitz matrices + GPU 
parallelization

• • Challenge: Memory usage grows with Krylov subspace size

• • Solution: GMRES(k) restarts → ~10× lower memory, enabling larger grids

• • Results: Up to 114× faster (vs CPU), 350× faster (vs Python); feasible on 
grids up to 8192×8192

• • Key Impact: ~2× larger task deployment without extra hardware or MPI

• • Applications: Design of photonic components, IC optimization



Methodology Flow Diagram

Problem:
Large Helmholtz 
Equations

Method:
GMRES + FFT + 
Toeplitz

Acceleration:
GPU Parallelization

Results:
Fast, Efficient, 
Large-scale EM 
Simulation



Summary

• - Developed an FFT-accelerated GMRES solver for 2D 
Helmholtz problems

• - GMRES requires Krylov subspace; restarts (GMRES(k)) 
reduce memory ~10×

• - Restart strategy enabled grids up to 8192×8192 on GPUs
• - Trade-off: lower memory vs. more iterations
• - GPU acceleration (V100) provided up to 114× faster vs 

CPU, 350× vs Python
• - Applications: TE/TM splitters, wavelength splitters, Bragg 

reflectors, IC optimization
• - Future work: non-uniform grids (higher accuracy, but 

Toeplitz limitations)



Fast & Efficient Electromagnetic Field Computations 
with GMRES(k) and GPU Acceleration

Problem
• Large Helmholtz equations for EM fields
• High computational & memory costs

Method
• GMRES solver with Krylov 
subspace
• GMRES(k) restarts to limit 
memory
• FFT + Toeplitz matrices
• GPU parallelization

Results
• 10× lower memory with restarts
• Up to 114× faster (vs CPU)
• Up to 350× faster (vs Python)
• Grids up to 8192×8192 feasible

Impact
• ~2× larger task deployment 
without MPI or new hardware
• Applications: Photonic design, 
IC optimization

Speedup on Different Platforms Memory Usage vs Grid Size



Performance Comparison

• CPU (MKL C++): baseline

• GPU (CUDA V100): up to 114× faster

• Python (NumPy): 350× slower than GPU

• GMRES(k) with restarts: ~10× lower memory, 
2× larger tasks



Future Work

• - Non-uniform grids may improve accuracy

• - But break Toeplitz structure (no FFT 
acceleration)

• - Requires new approaches for efficiency



Results – Extended

Fig. 7 – Computation time vs grid size



Results – Extended

Fig. 6 – Iterations vs grid size Fig. 5 – Error behavior with iterations



Results – Extended

Fig. 8 – Memory usage vs grid size



Appendix – Additional Figures

Additional Figure: figure_3_0.jpeg Additional Figure: figure_5_1.png

Additional Figure: figure_6_1.png Additional Figure: figure_7_1.png
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